We study the query complexity of the metric Steiner Tree problem, where we are given an $n \times n$ metric on a set $V$ of vertices along with a set $T \subseteq V$ of $k$ terminals, and the goal is to find a tree of minimum cost that contains all terminals in $T$. The query complexity for the related minimum spanning tree (MST) problem is well-understood: for any fixed $\varepsilon > 0$, one can estimate the MST cost to within a $(1+\varepsilon)$-factor using only $\tilde{O}(n)$ queries, and this is known to be tight. This implies that a $(2 + \varepsilon)$-approximate estimate of Steiner Tree cost can be obtained with $\tilde{O}(k)$ queries by simply applying the MST cost estimation algorithm on the metric induced by the terminals. Our first result shows that any (randomized) algorithm that estimates the Steiner Tree cost to within a $(5/3 - \varepsilon)$-factor requires $\Omega(n^2)$ queries, even if $k$ is a constant. This lower bound is in sharp contrast to an upper bound of $O(nk)$ queries for computing a $(5/3)$-approximate Steiner Tree, which follows from previous work by Du and Zelikovsky. Our second main result, and the main technical contribution of this work, is a sublinear query algorithm for estimating the Steiner Tree cost to within a strictly better-than-$2$ factor, with query complexity $\tilde{O}(n^{12/7} + n^{6/7}\cdot k)=\tilde{O}(n^{13/7})=o(n^2)$. We complement this result by showing an $\tilde{\Omega}(n + k^{6/5})$ query lower bound for any algorithm that estimates Steiner Tree cost to a strictly better than $2$ factor. Thus $\tilde{\Omega}(n^{6/5})$ queries are needed to just beat $2$-approximation when $k = \Omega(n)$; a sharp contrast to MST cost estimation where a $(1+o(1))$-approximate estimate of cost is achievable with only $\tilde{O}(n)$ queries.
翻译:我们研究的是有关 Steiner 树状问题的查询复杂性。 我们得到的是固定的 $\ varepsilon > 0美元, 我们得到的是 一个固定的 $( 1 ⁇ varepsilon) 以美元为单位的 MST 成本, 加上一个设定的 $\ subsetequal 美元, 目标是找到一个包含所有终端的最小成本树状( $T$) 的树状( MST) 的查询复杂性。 对于任何固定的 $\ varepsilon > 0美元, 我们能够估计的是, 美元以美元为单位的 $( 1 ⁇ varefilent) $( On), 这一点是已知的。 这意味着, $( 2 +\ varepsil) $- a listational dislational dislation $( $) 美元, 而对于一个固定的 $O = directr= a train tracker $( 美元) 美元, 我们的计算结果是 $5/3- dirent rietxxxxxxxxxxxxxxxx 美元, 美元, 。