We introduce a constructive analogue of $\Phi$-dimension, a notion of Hausdorff dimension developed using a restricted class of coverings of a set. A class of coverings $\Phi$ is said to be "faithful" to Hausdorff dimension if the $\Phi$-dimension and Hausdorff dimension coincide for every set. We prove a Point-to-Set Principle for $\Phi$-dimension, through which we get Point-to-Set Principles for Hausdorff Dimension, continued-fraction dimension and dimension of Cantor Coverings as special cases. Using the Point-to-Set Principle for Cantor coverings and a new technique for the construction of sequences satisfying a certain Kolmogorov complexity condition, we show that the notions of faithfulness of Cantor coverings at the Hausdorff and constructive levels are equivalent. We adapt the result by Albeverio, Ivanenko, Lebid, and Torbin to derive the necessary and sufficient conditions for the constructive dimension faithfulness of the coverings generated by the Cantor series expansion. This condition yields two general classes of representations of reals, one whose constructive dimensions that are equivalent to the constructive Hausdorff dimensions, and another, whose effective dimensions are different from the effective Hausdorff dimensions, completely classifying Cantor series expansions of reals.


翻译:暂无翻译

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年4月24日
Arxiv
0+阅读 · 2024年4月23日
Arxiv
0+阅读 · 2024年4月18日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员