We introduce the natural notion of a matching frame in a $2$-dimensional string. A matching frame in a $2$-dimensional $n\times m$ string $M$, is a rectangle such that the strings written on the horizontal sides of the rectangle are identical, and so are the strings written on the vertical sides of the rectangle. Formally, a matching frame in $M$ is a tuple $(u,d,\ell,r)$ such that $M[u][\ell ..r] = M[d][\ell ..r]$ and $M[u..d][\ell] = M[u..d][r]$. In this paper, we present an algorithm for finding the maximum perimeter matching frame in a matrix $M$ in $\tilde{O}(n^{2.5})$ time (assuming $n \ge m)$. Additionally, for every constant $\epsilon> 0$ we present a near-linear $(1-\epsilon)$-approximation algorithm for the maximum perimeter of a matching frame. In the development of the aforementioned algorithms, we introduce inventive technical elements and uncover distinctive structural properties that we believe will captivate the curiosity of the community.
翻译:暂无翻译