Sentiment analysis is integral to understanding the voice of the customer and informing businesses' strategic decisions. Conventional sentiment analysis involves three separate tasks: aspect-category detection (ACD), aspect-category sentiment analysis (ACSA), and rating prediction (RP). However, independently tackling these tasks can overlook their interdependencies and often requires expensive, fine-grained annotations. This paper introduces Unified Sentiment Analysis (Uni-SA), a novel learning paradigm that unifies ACD, ACSA, and RP into a coherent framework. To achieve this, we propose the Distantly Supervised Pyramid Network (DSPN), which employs a pyramid structure to capture sentiment at word, aspect, and document levels in a hierarchical manner. Evaluations on multi-aspect review datasets in English and Chinese show that DSPN, using only star rating labels for supervision, demonstrates significant efficiency advantages while performing comparably well to a variety of benchmark models. Additionally, DSPN's pyramid structure enables the interpretability of its outputs. Our findings validate DSPN's effectiveness and efficiency, establishing a robust, resource-efficient, unified framework for sentiment analysis.
翻译:暂无翻译