This paper addresses the challenges of delivering fine-grained Quality of Service (QoS) and communication determinism over 5G wireless networks for real-time and autonomous needs of Industrial Internet of Things (IIoT) applications while effectively sharing network resources. Specifically, this work presents DANSM, a dynamic and autonomous network slice management middleware for 5G-based IIoT use cases, such as adaptive robotic repair. The novelty of our approach lies in (1) its use of multiple M/M/1 queues to formulate a 5G network resource scheduling optimization problem comprising service-level and system-level objectives; (2) the design of a heuristics-based solution to overcome the NP-hard properties of this optimization problem, and (3) how it dynamically and autonomously provisions and manages 5G network slices used to deliver predictable communications to IIoT use cases. The results of experiments evaluating DANSM on our testbed comprising a Free5GC-based core and UERANSIM-based simulations reveal that it can efficiently balance the traffic load in the data plane thereby reducing the end-to-end response time and improve the service performance by finishing 64% of subtasks more than First Fit Descending (FFD) baseline approach while minimizing the operation cost.
翻译:本文讨论了在5G无线网络上提供优质服务质量(Qos)和通信确定性,满足工业用物互联网应用(IIoT)应用的实时和自主需要,同时有效共享网络资源的挑战,具体地说,这项工作是DANSM,一个动态和自主的网络切片管理中间软件,用于5G的IIoT使用案例,如适应性机器人修理。我们的方法的新颖之处在于:(1) 利用多M/M/1队列来制定5G网络资源调度最优化问题,包括服务级和系统级目标;(2) 设计基于超模的解决方案,以克服这一优化问题的NP硬性特性,(3) 如何以动态和自主的方式提供,管理5G网络切片,用于向IIoT使用案例提供可预测的通信。我们测试台的DANSM实验结果显示,它能够有效地平衡数据平面的交通负荷,从而减少端端至端反应时间,并改进服务性能,同时使亚塔的基线达到64%。