The solution of multistage stochastic linear problems (MSLP) represents a challenge for many applications. Long-term hydrothermal dispatch planning (LHDP) materializes this challenge in a real-world problem that affects electricity markets, economies, and natural resources worldwide. No closed-form solutions are available for MSLP and the definition of non-anticipative policies with high-quality out-of-sample performance of is crucial. Linear decision rules (LDR) provide an interesting simulation-based framework for finding high-quality policies to MSLP through two-stage stochastic models. In practical applications, however, the number of parameters to be estimated when using an LDR may be close or higher than the number of scenarios of the sample average approximation problem, thereby generating an in-sample overfit and poor performances in out-of-sample simulations. In this paper, we propose a novel regularized LDR to solve MSLP based on the AdaLASSO (adaptive least absolute shrinkage and selection operator). The goal is to use the parsimony principle as largely studied in high-dimensional linear regression models to obtain better out-of-sample performance for a LDR applied to MSLP. Computational experiments show that the overfit threat is non-negligible when using the classical non-regularized LDR to solve the LHDP, one of the most studied MSLP with relevant applications in industry. Our analysis highlights the following benefits of the proposed framework in comparison to the non-regularized benchmark: 1) significant reductions in the number of non-zero coefficients (model parsimony), 2) substantial cost reductions in out-of-sample evaluations, and 3) improved spot-price profiles.


翻译:多阶段随机线性问题的解决方案(MSLP)是许多应用中的一项挑战。长期热液发送规划(LHDP)在影响全球电力市场、经济和自然资源的现实世界问题中实现了这项挑战。对于MSLP来说,没有封闭式的解决方案,因此,在高品质外表外表性能的非防范性政策定义至关重要。线性决定规则(LDR)提供了一个有趣的模拟框架,通过两阶段随机模型为MSLP找到高质量政策。然而,在实际应用中,使用LDR时估计的参数数量可能接近或高于对全世界电力市场、经济和自然资源产生影响的现实世界问题。对于MSLPP(LDR)来说,在SDR(调整最不绝对的压缩和选择操作者)的基础上,我们提出了一个新颖的常规LDR(LDR)规则,在SDR(S-R)的常规性成本减少和选择操作者之间,在高度的SDR(S-L) IM-L) 模型中,在高度的正常性成本分析中,在SL-L-L-L-L-L-L-L-L-SDR) 大幅的模型模型中,在进行一项重大的业绩分析时,在进行一项重大的业绩分析时,在SL-SL-SL-SL-L-L-L-L-SL-L-L-L-L-S-L-S-L-S-S-S-L-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-L-L-L-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-L-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月20日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员