Physics-informed neural networks (PiNNs) recently emerged as a powerful solver for a large class of partial differential equations under various initial and boundary conditions. In this paper, we propose trapz-PiNNs, physics-informed neural networks incorporated with a modified trapezoidal rule recently developed for accurately evaluating fractional laplacian and solve the space-fractional Fokker-Planck equations in 2D and 3D. We describe the modified trapezoidal rule in detail and verify the second-order accuracy. We demonstrate trapz-PiNNs have high expressive power through predicting solution with low $\mathcal{L}^2$ relative error on a variety of numerical examples. We also use local metrics such as pointwise absolute and relative errors to analyze where could be further improved. We present an effective method for improving performance of trapz-PiNN on local metrics, provided that physical observations of high-fidelity simulation of the true solution are available. Besides the usual advantages of the deep learning solvers such as adaptivity and mesh-independence, the trapz-PiNN is able to solve PDEs with fractional laplacian with arbitrary $\alpha\in (0,2)$ and specializes on rectangular domain. It also has potential to be generalized into higher dimensions.
翻译:最近,物理学知情神经网络(PiNNS)成为了在各种初始和边界条件下大规模部分差异方程式的强大解决方案。在本文中,我们建议采用与经修改的诱捕和分裂规则结合的物理知情神经网络,以精确评估分光弧和解决2D和3D中的空间误差方程式。我们详细描述经修改的诱捕-分裂规则,并核实第二阶准确性。我们通过以低的'mascal{L ⁇ 2$'相对错误预测各种数字实例的解决方案,显示诱捕-诱杀-分裂方程式具有很高的显性能量。我们还使用诸如点度绝对性和相对错误等局部神经网络来分析哪些地方可以进一步改进。我们提出了一种有效方法来改进对本地度度的诱杀-PiNNE的性等方程式的性能,条件是能够对真实解决方案的高纤维性模拟进行物理观测。除了深深学习解解解的解决方案的优势外,例如适应性和中位独立,对于各种数字实例来说,陷阱-PiNNE的相对错误也能够用更高的绝对性和相对误差法的域法将它变成特殊的分辨率。