The analysis of electrical impulse phenomena in cardiac muscle tissue is important for the diagnosis of heart rhythm disorders and other cardiac pathophysiology. Cardiac mapping techniques acquire numerous local temporal measurements and combine them to visualize the spread of electrophysiological wave phenomena across the heart surface. However, low spatial resolutions, sparse measurement locations, noise and other artifacts make it challenging to accurately visualize spatio-temporal activity. For instance, electro-anatomical catheter mapping is severely limited by the sparsity of the measurements and optical mapping is prone to noise and motion artifacts. In the past, several approaches have been proposed to obtain more reliable maps from noisy or sparse mapping data. Here, we demonstrate that deep learning can be used to compute phase maps and detect phase singularities from both noisy and sparse electrical mapping data with high precision and efficiency. The self-supervised deep learning approach is fundamentally different from classical phase mapping techniques. Rather than encoding a phase signal from time-series data, the network instead learns to directly associate short spatio-temporal sequences of electrical data with phase maps and the positions of phase singularities. Using this method, we were able to accurately compute phase maps and locate rotor cores even from extremely sparse and noisy data, generated from both optical mapping experiments and computer simulations. Neural networks are a promising alternative to conventional phase mapping and rotor core localization methods, that could be used in optical mapping studies in basic cardiovascular research as well as in the clinical setting for the analysis of atrial fibrillation.


翻译:心脏肌肉组织中的电脉冲现象分析对于诊断心脏节律障碍和其他心脏病理病理非常重要。心血管绘图技术获得了大量局部时间测量,并结合这些技术以直观地显示电生理波现象在心脏表面的蔓延。然而,由于空间分辨率低、测量地点稀少、噪音和其他人工制品等原因,很难准确地直观地显示时空活动。例如,电反动导导导导导导导线绘图由于测量和光学绘图的广度而受到严重限制,容易产生噪音和运动人工制品。过去曾提出若干方法,以便从噪音或稀少的绘图数据中获取更可靠的地图。在这里,我们表明,可以利用深层次的学习来计算阶段地图,并从噪音和稀少的电气波波波波波波波波波波波波波波波波波波波波波波波现象在心脏表面的蔓延中蔓延。自我监督的深度学习方法与古典阶段绘图技术有根本的差别。网络与其时间序列数据的阶段信号相混合,相反,它学会将电磁波波波波波波序列序列序列序列序列序列序列序列与轨道定位位置位置位置,甚至进行深度的深度的模型分析。我们能够精确地分析,从一个深度的模型模型模型模型阶段,从一个核心,从一个模型分析阶段,从一个深度的模型分析,从一个核心,从一个核心,从一个深度的深度的模型分析,从一个核心,到一个核心,从一个核心,从一个核心,到一个核心,从一个核心,从一个核心,到一个核心,从一个核心,从一个核心,从一个核心,从一个核心,从一个核心,从一个核心,到一个深度的,从一个核心,从一个核心,从一个核心,从一个深度的,从一个深度的深度的深度的深度的深度的深度的深度的深度的模拟分析,从一个深度的模拟分析,从一个深度的计算,从一个深度的计算分析,从一个深度的,到一个深度的模拟分析,从一个深度的模拟分析,从一个深度的模拟的模拟分析中,从一个深度的计算,从一个深度分析,到一个深度分析,到一个深度分析,到一个深度分析,从一个核心,从一个核心,到一个深度分析,从一个深度分析,从一个深度分析,从一个深度分析,从一个核心,到

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
Arxiv
3+阅读 · 2018年10月25日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员