In the stochastic submodular cover problem, the goal is to select a subset of stochastic items of minimum expected cost to cover a submodular function. Solutions in this setting correspond to sequential decision processes that select items one by one "adaptively" (depending on prior observations). While such adaptive solutions achieve the best objective, the inherently sequential nature makes them undesirable in many applications. We ask: how well can solutions with only a few adaptive rounds approximate fully-adaptive solutions? We give nearly tight answers for both independent and correlated settings, proving smooth tradeoffs between the number of adaptive rounds and the solution quality, relative to fully adaptive solutions. Experiments on synthetic and real datasets show qualitative improvements in the solutions as we allow more rounds of adaptivity; in practice, solutions with a few rounds of adaptivity are nearly as good as fully adaptive solutions.


翻译:在随机子模块覆盖问题中,目标是选择一组具有最低预期成本的随机项目来覆盖子模块功能。 此处的解决方案与顺序决定过程相对应, 即“ 适应性” 选择一个项目( 取决于先前的观察结果 ) 。 虽然这些适应性解决方案达到了最佳目标, 但内在的顺序性质使得这些解决方案在许多应用中不可取。 我们问: 仅有几个适应性回合的解决方案能够有多好, 大约是完全适应性的解决方案。 我们为独立和关联的设置给出了近乎紧凑的答案, 证明适应性回合的数量和解决方案质量之间的平衡, 与完全适应性解决方案的相对。 合成和真实数据集实验显示解决方案的质量改进,因为我们允许更多轮的适应性; 实际上, 几轮适应性解决方案几乎和完全适应性解决方案一样好。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月30日
Arxiv
6+阅读 · 2021年6月4日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员