Given a high-dimensional data set we often wish to find the strongest relationships within it. A common strategy is to evaluate a measure of dependence on every variable pair and retain the highest-scoring pairs for follow-up. This strategy works well if the statistic used is equitable [Reshef et al. 2015a], i.e., if, for some measure of noise, it assigns similar scores to equally noisy relationships regardless of relationship type (e.g., linear, exponential, periodic). In this paper, we introduce and characterize a population measure of dependence called MIC*. We show three ways that MIC* can be viewed: as the population value of MIC, a highly equitable statistic from [Reshef et al. 2011], as a canonical "smoothing" of mutual information, and as the supremum of an infinite sequence defined in terms of optimal one-dimensional partitions of the marginals of the joint distribution. Based on this theory, we introduce an efficient approach for computing MIC* from the density of a pair of random variables, and we define a new consistent estimator MICe for MIC* that is efficiently computable. In contrast, there is no known polynomial-time algorithm for computing the original equitable statistic MIC. We show through simulations that MICe has better bias-variance properties than MIC. We then introduce and prove the consistency of a second statistic, TICe, that is a trivial side-product of the computation of MICe and whose goal is powerful independence testing rather than equitability. We show in simulations that MICe and TICe have good equitability and power against independence respectively. The analyses here complement a more in-depth empirical evaluation of several leading measures of dependence [Reshef et al. 2015b] that shows state-of-the-art performance for MICe and TICe.


翻译:根据一个高层次的数据组,我们常常希望找到其中最强烈的关系。一个共同的战略是评估对每个变异配方的依赖度,并保留最高分数,以便采取后续行动。如果所使用的统计是公平的,[Reshef 等2015a],即,对于某种程度的噪音来说,如果它给关系类型(例如线性、指数性、周期性)的边缘定出相似的分数与同样吵闹的关系。在本文中,我们引入和描述一种称为MIC*的人口依赖度。我们展示了三种方法,可以看:作为MIC的计算值,一个来自[Reshef 等2011年]的高度公平的统计。如果使用的统计是公平的[Reshef 等,这个战略效果很好,即,如果,对于某种最优化的一维分化的关系(例如线性、指数性、指数性、周期性)。基于这个理论,我们引入一种高效的计算MIC*的方法,从一组随机变量的密度中计算出一种高效的计算方法。我们定义了一个新的不精确的IMI的计算结果。我们从一个更精确的数值直径直径直值分析,从一个比较的IMIMICA值分析结果显示一个比较的直观的直观的直观和直观的直观的直观的直观的直观性, 。我们从一个对等的直观的直观的直观的直观和直观的直观的直观的直观的直观的直观的直观的直观的直观的直观的直观性对等的直观的直观的直观的直观性对等的直观性。我们。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年10月19日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
0+阅读 · 2021年10月16日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员