Variational autoencoder (VAE) architectures have the potential to develop reduced-order models (ROMs) for chaotic fluid flows. We propose a method for learning compact and near-orthogonal ROMs using a combination of a $\beta$-VAE and a transformer, tested on numerical data from a two-dimensional viscous flow in both periodic and chaotic regimes. The $\beta$-VAE is trained to learn a compact latent representation of the flow velocity, and the transformer is trained to predict the temporal dynamics in latent space. Using the $\beta$-VAE to learn disentangled representations in latent-space, we obtain a more interpretable flow model with features that resemble those observed in the proper orthogonal decomposition, but with a more efficient representation. Using Poincar\'e maps, the results show that our method can capture the underlying dynamics of the flow outperforming other prediction models. The proposed method has potential applications in other fields such as weather forecasting, structural dynamics or biomedical engineering.
翻译:变分自编码器(VAE)模型可以用于建立混沌流体流动的降维模型(ROM)。本文提出了一种使用$β$-VAE和变压器相结合的方法,在周期和混沌流动情况下测试了二维粘性流动的数值数据。$β$-VAE用于学习流动速度的紧凑潜在表示,变压器用于在潜在空间中预测时间动态。通过使用$β$-VAE学习潜在空间的分离表示,我们获得了一个更具可解释性的流动模型,其特征类似于观测到的正交分解,但具有更有效的表示。使用Poincar\'e图,结果显示我们的方法可以捕捉流动的基本动态,并超越其他预测模型。该方法在天气预报、结构动力学或生物医学工程等其他领域中具有潜在的应用。