Survival analysis is a critical tool for the modelling of time-to-event data, such as life expectancy after a cancer diagnosis or optimal maintenance scheduling for complex machinery. However, current neural network models provide an imperfect solution for survival analysis as they either restrict the shape of the target probability distribution or restrict the estimation to pre-determined times. As a consequence, current survival neural networks lack the ability to estimate a generic function without prior knowledge of its structure. In this article, we present the metaparametric neural network framework that encompasses existing survival analysis methods and enables their extension to solve the aforementioned issues. This framework allows survival neural networks to satisfy the same independence of generic function estimation from the underlying data structure that characterizes their regression and classification counterparts. Further, we demonstrate the application of the metaparametric framework using both simulated and large real-world datasets and show that it outperforms the current state-of-the-art methods in (i) capturing nonlinearities, and (ii) identifying temporal patterns, leading to more accurate overall estimations whilst placing no restrictions on the underlying function structure.
翻译:生存分析是模拟时间到活动数据的关键工具,例如癌症诊断后预期寿命或复杂机械的最佳维护时间安排;然而,目前的神经网络模型为生存分析提供了一个不完善的解决方案,因为它们要么限制目标概率分布的形状,要么将估计限制在预先确定的时间内;因此,目前的生存神经网络没有能力在没有事先了解其结构的情况下估计一个通用功能;在本条中,我们介绍了包含现有生存分析方法的元对称神经网络框架,该框架允许其扩展以解决上述问题;这一框架允许生存神经网络满足其回归和分类对应方特征的基本数据结构中通用功能估计的相同独立性;此外,我们用模拟和大型真实世界数据集展示了元对准框架的应用,并表明它在(一) 捕捉非线性数据,以及(二) 确定时间模式,导致更准确的总体估计,同时不限制基本功能结构。