Parallel Markov Chain Monte Carlo (pMCMC) algorithms generate clouds of proposals at each step to efficiently resolve a target probability distribution. We build a rigorous foundational framework for pMCMC algorithms that situates these methods within a unified `extended phase space' measure-theoretic formalism. Drawing on our recent work that provides a comprehensive theory for reversible single proposal methods, we herein derive general criteria for multiproposal acceptance mechanisms which yield unbiased chains on general state spaces. Our formulation encompasses a variety of methodologies, including proposal cloud resampling and Hamiltonian methods, while providing a basis for the derivation of novel algorithms. In particular, we obtain a top-down picture for a class of methods arising from `conditionally independent' proposal structures. As an immediate application, we identify several new algorithms including a multiproposal version of the popular preconditioned Crank-Nicolson (pCN) sampler suitable for high- and infinite-dimensional target measures which are absolutely continuous with respect to a Gaussian base measure. To supplement our theoretical results, we carry out a selection of numerical case studies that evaluate the efficacy of these novel algorithms. First, noting that the true potential of pMCMC algorithms arises from their natural parallelizability, we provide a limited parallelization study using TensorFlow and a graphics processing unit to scale pMCMC algorithms that leverage as many as 100k proposals at each step. Second, we use our multiproposal pCN algorithm (mpCN) to resolve a selection of problems in Bayesian statistical inversion for partial differential equations motivated by fluid measurement. These examples provide preliminary evidence of the efficacy of mpCN for high-dimensional target distributions featuring complex geometries and multimodal structures.


翻译:我们为PMCMC算法构建了一个严格的基底框架,将这些方法置于统一的“扩展阶段空间”的测量理论形式主义中。我们利用最近的工作,为可逆转的单一建议方法提供了全面理论,我们在此为多项建议接受机制提供了一般性标准,在一般州空间形成公正的链。我们的提法包含各种方法,包括建议云重印和汉密尔顿方程式方法,同时为新算法的衍生提供基础。特别是,我们为“有条件独立的”建议结构中产生的一系列方法绘制了一个自上而下的计算方法基础框架。作为一个直接应用,我们确定了若干新的算法,包括一个多建议版的多建议性版本,用于可逆转的单一建议方法,用于在一般州空间上建立公正的链链链链。我们的提法包括各种方法,包括建议云重和汉密尔顿方程式,同时为我们的理论结果提供我们从第二次CN的CN数值案例研究,用以评估这些新数字的精度的精度的精度的精度和节率性计算方法的精度。我们首先通过一系列的数学算法的精度的精度分析,我们利用各种精度的精度的精度的精度的精度分析法的精度的精度的精度的精度的精度分析结构结构的精度的精度分析结构的精度的精度,然后进行。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月19日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员