Parallel Markov Chain Monte Carlo (pMCMC) algorithms generate clouds of proposals at each step to efficiently resolve a target probability distribution. We build a rigorous foundational framework for pMCMC algorithms that situates these methods within a unified `extended phase space' measure-theoretic formalism. Drawing on our recent work that provides a comprehensive theory for reversible single proposal methods, we herein derive general criteria for multiproposal acceptance mechanisms which yield unbiased chains on general state spaces. Our formulation encompasses a variety of methodologies, including proposal cloud resampling and Hamiltonian methods, while providing a basis for the derivation of novel algorithms. In particular, we obtain a top-down picture for a class of methods arising from `conditionally independent' proposal structures. As an immediate application, we identify several new algorithms including a multiproposal version of the popular preconditioned Crank-Nicolson (pCN) sampler suitable for high- and infinite-dimensional target measures which are absolutely continuous with respect to a Gaussian base measure. To supplement our theoretical results, we carry out a selection of numerical case studies that evaluate the efficacy of these novel algorithms. First, noting that the true potential of pMCMC algorithms arises from their natural parallelizability, we provide a limited parallelization study using TensorFlow and a graphics processing unit to scale pMCMC algorithms that leverage as many as 100k proposals at each step. Second, we use our multiproposal pCN algorithm (mpCN) to resolve a selection of problems in Bayesian statistical inversion for partial differential equations motivated by fluid measurement. These examples provide preliminary evidence of the efficacy of mpCN for high-dimensional target distributions featuring complex geometries and multimodal structures.
翻译:我们为PMCMC算法构建了一个严格的基底框架,将这些方法置于统一的“扩展阶段空间”的测量理论形式主义中。我们利用最近的工作,为可逆转的单一建议方法提供了全面理论,我们在此为多项建议接受机制提供了一般性标准,在一般州空间形成公正的链。我们的提法包含各种方法,包括建议云重印和汉密尔顿方程式方法,同时为新算法的衍生提供基础。特别是,我们为“有条件独立的”建议结构中产生的一系列方法绘制了一个自上而下的计算方法基础框架。作为一个直接应用,我们确定了若干新的算法,包括一个多建议版的多建议性版本,用于可逆转的单一建议方法,用于在一般州空间上建立公正的链链链链。我们的提法包括各种方法,包括建议云重和汉密尔顿方程式,同时为我们的理论结果提供我们从第二次CN的CN数值案例研究,用以评估这些新数字的精度的精度的精度的精度和节率性计算方法的精度。我们首先通过一系列的数学算法的精度的精度分析,我们利用各种精度的精度的精度的精度的精度分析法的精度的精度的精度的精度的精度分析结构结构的精度的精度分析结构的精度的精度,然后进行。