We propose a nonparametric quantile regression method using deep neural networks with a rectified linear unit penalty function to avoid quantile crossing. This penalty function is computationally feasible for enforcing non-crossing constraints in multi-dimensional nonparametric quantile regression. We establish non-asymptotic upper bounds for the excess risk of the proposed nonparametric quantile regression function estimators. Our error bounds achieve optimal minimax rate of convergence for the Holder class, and the prefactors of the error bounds depend polynomially on the dimension of the predictor, instead of exponentially. Based on the proposed non-crossing penalized deep quantile regression, we construct conformal prediction intervals that are fully adaptive to heterogeneity. The proposed prediction interval is shown to have good properties in terms of validity and accuracy under reasonable conditions. We also derive non-asymptotic upper bounds for the difference of the lengths between the proposed non-crossing conformal prediction interval and the theoretically oracle prediction interval. Numerical experiments including simulation studies and a real data example are conducted to demonstrate the effectiveness of the proposed method.
翻译:我们建议采用非对称微量回归法,使用经纠正的线性单位惩罚功能的深神经网络,采用非对称微量回归法,以避免孔径交叉。这一惩罚功能在计算上对于执行多维非对称微量回归法中的非交叉限制是可行的。我们为拟议的非对称微量回归法的估测器的超风险确定了非非对称上限。我们的误差界限为持有者类别实现了最佳微量回归率,差错界限的前导体取决于预测器的多维度,而不是指数性。根据拟议的不交叉惩罚的深孔径回归法,我们构建完全适应异性的统一预测间隔。在合理条件下,拟议的预测间隔在有效性和准确性方面具有良好的特性。我们还得出了拟议不交叉一致预测间隔和理论或结论预测间隔之间的长度差异的非对称微量上限。进行了数值实验,包括模拟研究和真实数据实例,以证明拟议方法的有效性。