Recently some mixed alphabet rings are involved in constructing few-Lee weight additive codes with optimal or minimal Gray images using suitable defining sets or down-sets. Inspired by these works, we choose the mixed alphabet ring $\mathbb{Z}_2\mathbb{Z}_2[u]$ to construct a special class of linear code $C_L$ over $\mathbb{Z}_2[u]$ with $u^2=0$ by employing simplicial complexes generated by a single maximal element. We show that $C_L$ has few-Lee weights by determining the Lee weight distribution of $C_L$. Theoretically, this shows that we may employ simplicial complexes to obatin few-weight codes even in the case of mixed alphabet rings. We show that the Gray image of $C_L$ is self-orthogonal and we have an infinite family of minimal codes over $\mathbb{Z}_2$ via Gray map, which can be used to secret sharing schemes.
翻译:最近,一些混合字母环参与了使用合适的定义集或下层设置,使用最佳或最低灰色图像来构建几升重量添加码。受这些作品的启发,我们选择混合字母环 $\mathbb ⁇ 2\mathb ⁇ 2[u] 美元,用于构建特殊类别的线性代码$C_L$(超过$mathbb ⁇ 2美元)2[u]美元,使用单一最大元素生成的简化复合体$2=0美元。我们通过确定李重量分布值$C_L$,显示$C_L$的利值加权数很少。理论上,这显示即使在混合字母环的情况下,我们也可以使用简单复合复合的复合复合编码。我们显示,$C_L$的灰色图像是自体形的,我们通过灰色地图拥有一个无限的最小代码组合,超过$\mathb ⁇ 2美元,我们可以用于秘密共享计划。