Human motion prediction is a complex task as it involves forecasting variables over time on a graph of connected sensors. This is especially true in the case of few-shot learning, where we strive to forecast motion sequences for previously unseen actions based on only a few examples. Despite this, almost all related approaches for few-shot motion prediction do not incorporate the underlying graph, while it is a common component in classical motion prediction. Furthermore, state-of-the-art methods for few-shot motion prediction are restricted to motion tasks with a fixed output space meaning these tasks are all limited to the same sensor graph. In this work, we propose to extend recent works on few-shot time-series forecasting with heterogeneous attributes with graph neural networks to introduce the first few-shot motion approach that explicitly incorporates the spatial graph while also generalizing across motion tasks with heterogeneous sensors. In our experiments on motion tasks with heterogeneous sensors, we demonstrate significant performance improvements with lifts from 10.4% up to 39.3% compared to best state-of-the-art models. Moreover, we show that our model can perform on par with the best approach so far when evaluating on tasks with a fixed output space while maintaining two magnitudes fewer parameters.
翻译:摘要: 人体运动预测是一项复杂的任务,因为它涉及在连接传感器的图形上随时间预测变量。尤其是在Few-shot学习的情况下,我们必须在仅有少量的示例的情况下预测以前未见过的动作的运动序列。尽管如此,几乎所有相关的few-shot运动预测方法都没有纳入底层的图形,而在传统的运动预测中,图形是一个常见的组成部分。此外,目前最先进的few-shot运动预测方法都限于具有固定输出空间的运动任务,这意味着这些任务都受到相同传感器图形的限制。 在本研究中,我们提出了一种方法,将异构属性的few-shot时间序列预测与图形神经网络相结合,以引入首个明确纳入空间图形并且可以在具有异构传感器运动任务上进行泛化的few-shot运动方法。在我们进行的具有异构传感器的运动任务实验中,与最佳最新模型相比,我们展示了显著的性能改进,提高了10.4%到39.3%。此外,我们还表明,我们的模型可以在固定输出空间的任务上执行与迄今为止最佳方法相同的操作,同时保持少得多的参数量。