Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic that has spread rapidly since December 2019. Real-time reverse transcription polymerase chain reaction (rRT-PCR) and chest computed tomography (CT) imaging both play an important role in COVID-19 diagnosis. Chest CT imaging offers the benefits of quick reporting, a low cost, and high sensitivity for the detection of pulmonary infection. Recently, deep-learning-based computer vision methods have demonstrated great promise for use in medical imaging applications, including X-rays, magnetic resonance imaging, and CT imaging. However, training a deep-learning model requires large volumes of data, and medical staff faces a high risk when collecting COVID-19 CT data due to the high infectivity of the disease. Another issue is the lack of experts available for data labeling. In order to meet the data requirements for COVID-19 CT imaging, we propose a CT image synthesis approach based on a conditional generative adversarial network that can effectively generate high-quality and realistic COVID-19 CT images for use in deep-learning-based medical imaging tasks. Experimental results show that the proposed method outperforms other state-of-the-art image synthesis methods with the generated COVID-19 CT images and indicates promising for various machine learning applications including semantic segmentation and classification.


翻译:2019年科罗纳病毒疾病(COVID-19)是2019年12月以来迅速蔓延的持续性全球流行病,2019年科罗纳病毒疾病(COVID-19)在诊断COVID-19时,实时反向转录聚合酶链反应(rRT-PCR)和胸部计算透视成像在COVID-19诊断中都发挥着重要作用;胸部CT成像可带来快速报告、低成本和高敏感度检测肺部感染的惠益;最近,基于深学习的计算机视觉方法显示,在医疗成像应用中,包括X光、磁共振动成像和CT成像,都大有希望使用。然而,培训深层学习模型需要大量数据,医务人员在收集COVID-19CT数据时面临很大风险,因为该疾病感染性很高。另一个问题是缺乏可用于数据标签的专家。为了满足CVID-19CT成像的数据要求,我们建议采用基于有条件的基因对立对立对立对立网络的CT图像合成方法,可以有效地生成高质量和现实的COVI-19CT图像,而医疗工作人员在收集COVI-19成像中要显示其他有希望的医学成像的方法。

0
下载
关闭预览

相关内容

【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
4+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
Top
微信扫码咨询专知VIP会员