Machine learning has achieved dramatic success in a broad spectrum of applications. Its interplay with quantum physics may lead to unprecedented perspectives for both fundamental research and commercial applications, giving rise to an emergent research frontier of quantum machine learning. Along this line, quantum classifiers, which are quantum devices that aim to solve classification problems in machine learning, have attracted tremendous attention recently. In this review, we give a relatively comprehensive overview for the studies of quantum classifiers, with a focus on recent advances. First, we will review a number of quantum classification algorithms, including quantum support vector machines, quantum kernel methods, quantum decision tree classifiers, quantum nearest neighbor algorithms, and quantum annealing based classifiers. Then, we move on to introduce the variational quantum classifiers, which are essentially variational quantum circuits for classifications. We will review different architectures for constructing variational quantum classifiers and introduce the barren plateau problem, where the training of quantum classifiers might be hindered by the exponentially vanishing gradient. In addition, the vulnerability aspect of quantum classifiers in the setting of adversarial learning and the recent experimental progress on different quantum classifiers will also be discussed.


翻译:机器学习在广泛的应用领域取得了巨大成功。 它与量子物理的相互作用可能导致基本研究和商业应用的前所未有的视角,从而产生量子机器学习的新兴研究前沿。 沿着这条线,量子分类器,即旨在解决机器学习中的分类问题的量子装置,最近引起了极大的关注。 在本次审查中,我们对量子分类器的研究进行相对全面的概述,重点是最近的进展。 首先,我们将审查量子分类算法,包括量子支持矢量器、量子内核方法、量子决定树分类器、近邻算法和量子肛门法。 然后,我们将着手引进变量量量定量分类器,这基本上是分类的变量量量分类路。 我们将审查建造变量量量定量分类器的不同结构,并引入贫瘠高地问题,在那里,量子分类器的培训可能受到指数消化梯度的阻碍。 此外,还将讨论量子分类器在确定对抗性学习过程中的脆弱性以及最近对不同量子分类的实验性进展。

0
下载
关闭预览

相关内容

医学人工智能AIM(Artificial Intelligence in Medicine)杂志发表了多学科领域的原创文章,涉及医学中的人工智能理论和实践,以医学为导向的人类生物学和卫生保健。医学中的人工智能可以被描述为与研究、项目和应用相关的科学学科,旨在通过基于知识或数据密集型的计算机解决方案支持基于决策的医疗任务,最终支持和改善人类护理提供者的性能。 官网地址:http://dblp.uni-trier.de/db/journals/artmed/
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
专知会员服务
116+阅读 · 2019年12月24日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年11月27日
Arxiv
0+阅读 · 2021年11月27日
Arxiv
0+阅读 · 2021年11月26日
Arxiv
11+阅读 · 2021年3月25日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
0+阅读 · 2021年11月27日
Arxiv
0+阅读 · 2021年11月27日
Arxiv
0+阅读 · 2021年11月26日
Arxiv
11+阅读 · 2021年3月25日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
4+阅读 · 2018年4月30日
Top
微信扫码咨询专知VIP会员