Machine learning has achieved dramatic success in a broad spectrum of applications. Its interplay with quantum physics may lead to unprecedented perspectives for both fundamental research and commercial applications, giving rise to an emergent research frontier of quantum machine learning. Along this line, quantum classifiers, which are quantum devices that aim to solve classification problems in machine learning, have attracted tremendous attention recently. In this review, we give a relatively comprehensive overview for the studies of quantum classifiers, with a focus on recent advances. First, we will review a number of quantum classification algorithms, including quantum support vector machines, quantum kernel methods, quantum decision tree classifiers, quantum nearest neighbor algorithms, and quantum annealing based classifiers. Then, we move on to introduce the variational quantum classifiers, which are essentially variational quantum circuits for classifications. We will review different architectures for constructing variational quantum classifiers and introduce the barren plateau problem, where the training of quantum classifiers might be hindered by the exponentially vanishing gradient. In addition, the vulnerability aspect of quantum classifiers in the setting of adversarial learning and the recent experimental progress on different quantum classifiers will also be discussed.
翻译:机器学习在广泛的应用领域取得了巨大成功。 它与量子物理的相互作用可能导致基本研究和商业应用的前所未有的视角,从而产生量子机器学习的新兴研究前沿。 沿着这条线,量子分类器,即旨在解决机器学习中的分类问题的量子装置,最近引起了极大的关注。 在本次审查中,我们对量子分类器的研究进行相对全面的概述,重点是最近的进展。 首先,我们将审查量子分类算法,包括量子支持矢量器、量子内核方法、量子决定树分类器、近邻算法和量子肛门法。 然后,我们将着手引进变量量量定量分类器,这基本上是分类的变量量量分类路。 我们将审查建造变量量量定量分类器的不同结构,并引入贫瘠高地问题,在那里,量子分类器的培训可能受到指数消化梯度的阻碍。 此外,还将讨论量子分类器在确定对抗性学习过程中的脆弱性以及最近对不同量子分类的实验性进展。