Recent research has demonstrated the usefulness of neural networks as variational ansatz functions for quantum many-body states. However, high-dimensional sampling spaces and transient autocorrelations confront these approaches with a challenging computational bottleneck. Compared to conventional neural networks, physical-model devices offer a fast, efficient and inherently parallel substrate capable of related forms of Markov chain Monte Carlo sampling. Here, we demonstrate the ability of a neuromorphic chip to represent the ground states of quantum spin models by variational energy minimization. We develop a training algorithm and apply it to the transverse field Ising model, showing good performance at moderate system sizes ($N\leq 10$). A systematic hyperparameter study shows that scalability to larger system sizes mainly depends on sample quality, which is limited by temporal parameter variations on the analog neuromorphic chip. Our work thus provides an important step towards harnessing the capabilities of neuromorphic hardware for tackling the curse of dimensionality in quantum many-body problems.
翻译:最近的研究表明神经网络作为量子多体状态的变异 ansatz 函数是神经网络的有用性。 但是,高维抽样空间和瞬态自动反向反向自动调节关系以具有挑战性的计算瓶颈面对着这些方法。 与传统的神经网络相比,物理模型装置提供了快速、高效和内在平行的基质,能够形成Markov链 Monte Carlo 相关形式的相关取样。 在这里,我们展示了神经定态芯片通过变异能量最小化来代表量子旋转模型的地面状态的能力。 我们开发了一种培训算法并将其应用到横贯的Is 模型,显示中等系统大小的性能良好(N\leq 10美元 )。 系统性的超参数研究表明,对更大系统大小的可扩缩性主要取决于样本质量,而样本质量受到模拟神经形态芯的时参数变化的限制。 因此,我们的工作为利用神经形态硬件的能力解决数量体问题的维度的诅咒提供了重要的一步。