Efficient exploration remains a challenging problem in reinforcement learning, especially for tasks where extrinsic rewards from environments are sparse or even totally disregarded. Significant advances based on intrinsic motivation show promising results in simple environments but often get stuck in environments with multimodal and stochastic dynamics. In this work, we propose a variational dynamic model based on the conditional variational inference to model the multimodality and stochasticity. We consider the environmental state-action transition as a conditional generative process by generating the next-state prediction under the condition of the current state, action, and latent variable, which provides a better understanding of the dynamics and leads a better performance in exploration. We derive an upper bound of the negative log-likelihood of the environmental transition and use such an upper bound as the intrinsic reward for exploration, which allows the agent to learn skills by self-supervised exploration without observing extrinsic rewards. We evaluate the proposed method on several image-based simulation tasks and a real robotic manipulating task. Our method outperforms several state-of-the-art environment model-based exploration approaches.


翻译:在强化学习方面,特别是在环境的外部回报很少甚至完全被忽视的情况下,高效的探索仍然是一项具有挑战性的问题。基于内在动力的重大进步表明在简单环境中取得了有希望的结果,但往往被困在多式和随机动态的环境中。在这项工作中,我们提出了一个基于模拟多式联运和随机性的有条件的变异推论的变异动态模型。我们认为环境状态行动过渡是一种有条件的基因化过程,在目前状态、行动和潜在变异的条件下进行下一个国家的预测,从而更好地了解动态并导致更好的勘探业绩。我们从环境转型的负日志相似性中获取了一个上层界限,并使用一个作为内在勘探奖赏的顶层,使代理人能够在不观察极端奖赏的情况下通过自我监督的勘探学习技能。我们评估了若干基于图像的模拟任务和真正的机器人操纵任务的拟议方法。我们的方法优于几种基于环境模型的状态探索方法。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
4+阅读 · 2020年3月19日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
6+阅读 · 2018年12月10日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
14+阅读 · 2021年8月5日
Arxiv
4+阅读 · 2020年3月19日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
6+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员