We prove that, on bounded expansion classes, every first-order formula with modulo counting is equivalent, in a linear-time computable monadic expansion, to an existential first-order formula. As a consequence, we derive, on bounded expansion classes, that first-order transductions with modulo counting have the same encoding power as existential first-order transductions. Also, modulo-counting first-order model checking and computation of the size of sets definable in modulo-counting first-order logic can be achieved in linear time on bounded expansion classes. As an application, we prove that a class has structurally bounded expansion if and only if it is a class of bounded depth vertex-minors of graphs in a bounded expansion class. We also show how our results can be used to implement fast matrix calculus on bounded expansion matrices over a finite field.
翻译:我们证明,在有界扩张类上,每个带有模数计数的一阶公式,都可以等价于一个存在性一阶公式,在一个线性时间可计算的单调扩展中。作为推论,我们得到,在有界扩张类上,带有模数计数的一阶转换具有与存在性一阶转换相同的编码能力。在有界扩张类上,带有模数计数的一阶模型检查和计算在模数计数一阶逻辑中可定义的集合大小可以在线性时间内完成。作为应用,我们证明,如果一个类是有界扩张类中图的有界深度顶点子矩阵,则该类具有结构上有界的扩张。我们还展示了如何利用我们的结果在有限域上的有界扩张矩阵上执行快速矩阵求导。