Active learning is popular approach for reducing the amount of data in training deep neural network model. Its success hinges on the choice of an effective acquisition function, which ranks not yet labeled data points according to their expected informativeness. In uncertainty sampling, the uncertainty that the current model has about a point's class label is the main criterion for this type of ranking. This paper proposes a new approach to uncertainty sampling in training a Convolutional Neural Network (CNN). The main idea is to use feature representation extracted extracted by the CNN as data for training a Sum-Product Network (SPN). Since SPNs are typically used for estimating the distribution of a dataset, they are well suited to the task of estimating class probabilities that can be used directly by standard acquisition functions such as max entropy and variational ratio. Moreover, we enhance these acquisition functions by weights calculated with the help of the SPN model; these weights make the acquisition function more sensitive to the diversity of conceivable class labels for data points. The effectiveness of our method is demonstrated in an experimental study on the MNIST, Fashion-MNIST and CIFAR-10 datasets, where we compare it to the state-of-the-art methods MC Dropout and Bayesian Batch.


翻译:积极学习是减少深神经网络模型培训中数据数量的流行方法,其成功取决于选择有效的获取功能,该功能通常用于估计数据集的分布,因此,根据预期的信息性,将尚未标出数据点排在标签上。在不确定性抽样中,当前模型对某一点等级标签的不确定性是这类排名的主要标准。本文提出在培训进化神经网络时采用新的不确定性抽样方法。主要想法是利用CNN提取的特征代表作为数据点培训数据点的数据。由于SPN通常用于估计数据集的分布,因此,SPN非常适合估算可以通过标准获取功能直接使用的类别概率,例如最大诱变率和变异率。此外,我们用SPN模型计算出的权重来增强这些获取功能;这些权重使获取功能对数据点方面可想象的等级标签的多样性更加敏感。我们的方法在对MNIST、Fashin-MINST和CIFAR-10MS进行实验性研究时展示了效力,我们将它与BAR-MS-BAR-MS的状态进行比较。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月5日
Arxiv
21+阅读 · 2022年2月24日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
11+阅读 · 2018年10月17日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关论文
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员