Recently, dynamic inference has emerged as a promising way to reduce the computational cost of deep convolutional neural network (CNN). In contrast to static methods (e.g. weight pruning), dynamic inference adaptively adjusts the inference process according to each input sample, which can considerably reduce the computational cost on "easy" samples while maintaining the overall model performance. In this paper, we introduce a general framework, S2DNAS, which can transform various static CNN models to support dynamic inference via neural architecture search. To this end, based on a given CNN model, we first generate a CNN architecture space in which each architecture is a multi-stage CNN generated from the given model using some predefined transformations. Then, we propose a reinforcement learning based approach to automatically search for the optimal CNN architecture in the generated space. At last, with the searched multi-stage network, we can perform dynamic inference by adaptively choosing a stage to evaluate for each sample. Unlike previous works that introduce irregular computations or complex controllers in the inference or re-design a CNN model from scratch, our method can generalize to most of the popular CNN architectures and the searched dynamic network can be directly deployed using existing deep learning frameworks in various hardware devices.


翻译:最近,动态推论已经出现,成为降低深卷动神经网络计算成本的一个有希望的方法。 与静态方法(例如重量调整)相比,动态推论根据每个输入样本对推论过程进行了适应性调整,这可以大大减少“ 容易” 样本的计算成本,同时保持总体模型性能。 在本文中,我们引入了一个总框架,即S2DNAS,它可以转换各种静态CNN模型,以支持通过神经结构搜索进行动态推论。为此,我们首先根据给定的CNN模型,产生了一个CNN结构空间,其中每个结构都是使用某些预设的变异从给定模型产生的多阶段CNN结构。然后,我们提出一个基于强化的学习方法,以自动搜索生成空间中的最佳CNN结构。最后,通过搜索多阶段网络,我们可以通过适应性地选择每个样本评估的舞台来进行动态推论。 不同于以前在推论中引入不规则的计算或复杂控制器或重新设计CNN模型的模型时,我们的方法可以直接使用最动态的网络的硬件。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员