In noisy evolutionary optimization, sampling is a common strategy to deal with noise. By the sampling strategy, the fitness of a solution is evaluated multiple times (called \emph{sample size}) independently, and its true fitness is then approximated by the average of these evaluations. Most previous studies on sampling are empirical, and the few theoretical studies mainly showed the effectiveness of sampling with a sufficiently large sample size. In this paper, we theoretically examine what strategies can work when sampling with any fixed sample size fails. By constructing a family of artificial noisy examples, we prove that sampling is always ineffective, while using parent or offspring populations can be helpful on some examples. We also construct an artificial noisy example to show that when using neither sampling nor populations is effective, a tailored adaptive sampling (i.e., sampling with an adaptive sample size) strategy can work. These findings may enhance our understanding of sampling to some extent, but future work is required to validate them in natural situations.
翻译:在吵闹的进化优化中,抽样是处理噪音的常见策略。通过抽样战略,对溶液的适合性进行了多次独立评估(称为 emph{sample size ), 其真实性则被这些评估的平均值所近似。 大多数先前的抽样研究都是经验性的, 少数理论研究主要显示了抽样规模足够大的取样的有效性。 在本文中, 我们理论上研究在任何固定取样规模的取样失败时, 哪些战略是有效的。 通过构建一个人工吵闹的例子, 我们证明采样总是无效的, 而使用父母或后代人口可以在某些例子上有所帮助。 我们还建立了一个人为的吵闹的例子, 表明在使用采样或人口都不有效的情况下, 定制的适应性采样( 即具有适应性取样规模的采样) 战略是有效的。 这些研究结果可能在某种程度上增进我们对采样的理解, 但未来的工作需要在自然情况下验证这些抽样。