The {\em Atomic Cluster Expansion} (Drautz, Phys. Rev. B 99, 2019) provides a framework to systematically derive polynomial basis functions for approximating isometry and permutation invariant functions, particularly with an eye to modelling properties of atomistic systems. Our presentation extends the derivation in a way that yields immediate guarantees that a complete basis is indeed obtained. We provide a fast recursive algorithm for efficient evaluation and illustrate its performance in numerical tests. Finally, we discuss generalisations and open challenges, particularly from a numerical stability perspective, around basis optimisation and parameter estimation, paving the way towards a comprehensive analysis of the convergence to a high-fidelity reference model.
翻译: ⁇ 原子集群扩展}(Drautz,Phys.Rev.B 99, 2019)提供了一个框架,以便系统地得出关于近似异度和异变函数的多元基函数,特别是为了模拟原子系的特性。我们的介绍扩展了推导方法,即能立即保证确实获得完整基础。我们为高效评估提供了快速的递归算法,并用数字测试来说明其性能。最后,我们讨论了一般化和公开的挑战,特别是从数字稳定性的角度,围绕基础优化和参数估计,为全面分析与高不贞参考模型的趋同铺平了道路。