We develop finite element methods for coupling the steady-state Onsager--Stefan--Maxwell equations to compressible Stokes flow. These equations describe multicomponent flow at low Reynolds number, where a mixture of different chemical species within a common thermodynamic phase is transported by convection and molecular diffusion. Developing a variational formulation for discretizing these equations is challenging: the formulation must balance physical relevance of the variables and boundary data, regularity assumptions, tractability of the analysis, enforcement of thermodynamic constraints, ease of discretization, and extensibility to the transient, anisothermal, and non-ideal settings. To resolve these competing goals, we employ two augmentations: the first enforces the mass-average constraint in the Onsager--Stefan--Maxwell equations, while its dual modifies the Stokes momentum equation to enforce symmetry. Remarkably, with these augmentations we achieve a Picard linearization of symmetric saddle point type, despite the equations not possessing a Lagrangian structure. Exploiting the structure of linear irreversible thermodynamics, we prove the inf-sup condition for this linearization, and identify finite element function spaces that automatically inherit well-posedness. We verify our error estimates with a numerical example, and illustrate the application of the method to non-ideal fluids with a simulation of the microfluidic mixing of hydrocarbons.
翻译:我们开发了将稳态 Onstager-Stefan-Maxwell 方程式与稳态 Onstager-Stefan-Maxwell 方程式相混合以压缩 Stokes 流。 这些方程式描述以低 Reynolds 数表示的多构件流, 共同热力阶段的不同化学物种混合通过对流和分子扩散迁移。 开发这些方程式具有挑战性: 配方必须平衡变量和边界数据的物理相关性、 规律假设、 分析的可移动性、 热力约束的强制力、 离散性, 以及可延伸到中转性、 厌食性热和非理想的设置。 为了解决这些相互竞争的目标, 我们使用两种增强功能: 第一个执行Onsager- Stefan- Maxwell 方程式中的质量平均限制, 而其二元修改斯托克斯动力方方方程式以强制测量。 值得称, 有了这些增强性分析的精度点类型, 尽管我们没有一个不折不动的碳基结构, 我们用直流化的直流化模型来自动地校准地校准地校正地校正地校正地校准地校正地校正地校正 函数校正 。