Neural field models are nonlinear integro-differential equations for the evolution of neuronal activity, and they are a prototypical large-scale, coarse-grained neuronal model in continuum cortices. Neural fields are often simulated heuristically and, in spite of their popularity in mathematical neuroscience, their numerical analysis is not yet fully established. We introduce generic projection methods for neural fields, and derive a-priori error bounds for these schemes. We extend an existing framework for stationary integral equations to the time-dependent case, which is relevant for neuroscience applications. We find that the convergence rate of a projection scheme for a neural field is determined to a great extent by the convergence rate of the projection operator. This abstract analysis, which unifies the treatment of collocation and Galerkin schemes, is carried out in operator form, without resorting to quadrature rules for the integral term, which are introduced only at a later stage, and whose choice is enslaved by the choice of the projector. Using an elementary timestepper as an example, we demonstrate that the error in a time stepper has two separate contributions: one from the projector, and one from the time discretisation. We give examples of concrete projection methods: two collocation schemes (piecewise-linear and spectral collocation) and two Galerkin schemes (finite elements and spectral Galerkin); for each of them we derive error bounds from the general theory, introduce several discrete variants, provide implementation details, and present reproducible convergence tests.


翻译:神经场模型是神经活动进化的非线性内分形神经活动的非线性内分形方程式,是神经活动进化的非线性内分形模型,是神经神经领域的原型大型、粗粗重神经模型,在连续的螺旋形内,神经场往往是模拟的,尽管在数学神经科学中很受欢迎,但其数值分析尚未完全建立。我们为神经场引入通用的预测方法,并为这些图案定出优先错误界限。我们把固定整体方程式的现有框架扩大到与神经科学应用相关的时间依赖性方程式。我们发现,神经领域预测方案的趋同率在很大程度上是由投影操作者的趋同率决定的。这种抽象分析,虽然在数学神经科学中很受欢迎,但是还没有完全建立其数值分析,我们不采用整体术语的四重置规则,而这种规则只是后来才被引入的,而且其选择由投影仪所奴役的。我们以初级时间档为例,我们用一个时间档的误差来证明一个时间轴的神经场域域域域图,每个直径直径直线图中有两个不同的分数:一个数值测,从一个直径直径直径直线的测的平的测法,从一个直径直线图,从一个直射线图的两分级图,一个直取两个推一个直射法。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年12月19日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员