There is a renewed interest in radar sensors in the autonomous driving industry. As a relatively mature technology, radars have seen steady improvement over the last few years, making them an appealing alternative or complement to the commonly used LiDARs. An emerging trend is to leverage rich, low-level radar data for perception. In this work we push this trend to the extreme -- we propose a method to perform end-to-end learning on the raw radar analog-to-digital (ADC) data. Specifically, we design a learnable signal processing module inside the neural network, and a pre-training method guided by traditional signal processing algorithms. Experiment results corroborate the overall efficacy of the end-to-end learning method, while an ablation study validates the effectiveness of our individual innovations.
翻译:近年来,自动驾驶行业对雷达传感器的关注度有所上升。作为一种相对成熟的技术,雷达在过去几年中有了持续的进步,这使得它们成为常用的激光雷达的一个有吸引力的替代品或补充品。利用丰富的、低级别的雷达数据进行感知成为了一个新兴的趋势。在这项工作中,我们将这一趋势推向了极限 - 我们提出了一种利用原始雷达模数转换(ADC)数据进行端到端学习的方法。具体来说,我们在神经网络中设计了一个可学习的信号处理模块,并采用传统信号处理算法指导的预训练方法。实验结果证实了端到端学习方法的整体有效性,而消融研究则验证了我们个别创新的有效性。