Self-supervised contrastive learning offers a means of learning informative features from a pool of unlabeled data. In this paper, we delve into another useful approach -- providing a way of selecting a core-set that is entirely unlabeled. In this regard, contrastive learning, one of a large number of self-supervised methods, was recently proposed and has consistently delivered the highest performance. This prompted us to choose two leading methods for contrastive learning: the simple framework for contrastive learning of visual representations (SimCLR) and the momentum contrastive (MoCo) learning framework. We calculated the cosine similarities for each example of an epoch for the entire duration of the contrastive learning process and subsequently accumulated the cosine-similarity values to obtain the coreset score. Our assumption was that an sample with low similarity would likely behave as a coreset. Compared with existing coreset selection methods with labels, our approach reduced the cost associated with human annotation. The unsupervised method implemented in this study for coreset selection obtained improved results over a randomly chosen subset, and were comparable to existing supervised coreset selection on various classification datasets (e.g., CIFAR, SVHN, and QMNIST).


翻译:自我监督的对比学习提供了一种从一组未贴标签的数据中学习信息特征的方法。 在本文中,我们探索了另一种有用的方法 -- -- 提供了选择完全未贴标签的核心集的方法的一种方法。在这方面,最近提出了对比学习,这是大量自监督方法之一,最近一直提供最高绩效。这促使我们选择了两种对比学习的主要方法:视觉表现对比学习的简单框架(SimCLR)和动力对比学习框架。我们计算了对比学习过程整个期间每个缩格的共生相似性,并随后积累了获得核心集分的相似性值。我们的假设是,与现有核心集选择方法相比,与标签相比,我们的方法降低了与人类标记相关的成本。本研究中采用的未经监督的核心集选择方法在随机选择子集中取得了更好的结果,并可以与现有的受监督的核心集分、S-N-MR-Q等数据分类中的数据集(S-Q、VI-VI-VI-VI-VI-VI-VI-VI-VI-VI-VI-VI-VI-VI-VI-VI-VI-VI-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-III-

0
下载
关闭预览

相关内容

【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
9+阅读 · 2017年7月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
31+阅读 · 2020年9月21日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
9+阅读 · 2017年7月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员