A hybrid encryption (HE) system is an efficient public key encryption system for arbitrarily long messages. An HE system consists of a public key component called key encapsulation mechanism (KEM), and a symmetric key component called data encapsulation mechanism (DEM). The HE encryption algorithm uses a KEM generated key k to encapsulate the message using DEM, and send the ciphertext together with the encapsulaton of k, to the decryptor who decapsulates k and uses it to decapsulate the message using the corresponding KEM and DEM components. The KEM/DEM composition theorem proves that if KEM and DEM satisfy well-defined security notions, then HE will be secure with well defined security. We introduce HE in correlated randomness model where the encryption and decryption algorithms have samples of correlated random variables that are partially leaked to the adversary. Security of the new KEM/DEM paradigm is defined against computationally unbounded or polynomially bounded adversaries. We define iKEM and cKEM with respective information theoretic computational security, and prove a composition theorem for them and a computationally secure DEM, resulting in secure HEs with proved computational security (CPA and CCA) and without any computational assumption. We construct two iKEMs that provably satisfy the required security notions of the composition theorem. The iKEMs are used to construct two efficient quantum-resistant HEs when used with an AES based DEM. We also define and construct combiners with proved security that combine the new KEM/DEM paradigm of HE with the traditional public key based paradigm of HE.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员