In this paper, we consider the problem of distributed optimisation of a separable convex cost function over a graph, where every edge and node in the graph could carry both linear equality and/or inequality constraints. We show how to modify the primal-dual method of multipliers (PDMM), originally designed for linear equality constraints, such that it can handle inequality constraints as well. In contrast to most existing algorithms for optimisation with inequality constraints, the proposed algorithm does not need any slack variables. Using convex analysis, monotone operator theory and fixed-point theory, we show how to derive the update equations of the modified PDMM algorithm by applying Peaceman-Rachford splitting to the monotonic inclusion related to the extended dual problem. To incorporate the inequality constraints, we impose a non-negativity constraint on the associated dual variables. This additional constraint results in the introduction of a reflection operator to model the data exchange in the network, instead of a permutation operator as derived for equality constraint PDMM. Convergence for both synchronous and stochastic update schemes of PDMM are provided. The latter includes asynchronous update schemes and update schemes with transmission losses.
翻译:暂无翻译