Predictive simulations of the shock-to-detonation transition (SDT) in heterogeneous energetic materials (EM) are vital to the design and control of their energy release and sensitivity. Due to the complexity of the thermo-mechanics of EM during the SDT, both macro-scale response and sub-grid mesoscale energy localization must be captured accurately. This work proposes an efficient and accurate multiscale framework for SDT simulations of EM. We introduce a new approach for SDT simulation by using deep learning to model the mesoscale energy localization of shock-initiated EM microstructures. The proposed multiscale modeling framework is divided into two stages. First, a physics-aware recurrent convolutional neural network (PARC) is used to model the mesoscale energy localization of shock-initiated heterogeneous EM microstructures. PARC is trained using direct numerical simulations (DNS) of hotspot ignition and growth within microstructures of pressed HMX material subjected to different input shock strengths. After training, PARC is employed to supply hotspot ignition and growth rates for macroscale SDT simulations. We show that PARC can play the role of a surrogate model in a multiscale simulation framework, while drastically reducing the computation cost and providing improved representations of the sub-grid physics. The proposed multiscale modeling approach will provide a new tool for material scientists in designing high-performance and safer energetic materials.
翻译:由于热力学和力学的复杂性,对于具有异质性的高能材料,在设计和控制其能量释放和灵敏度方面都需要进行预测性模拟。本文提出了一种高效和精确的物理多尺度框架,用于匹配高性能和安全高能材料的设计。我们提出了一种新的方法来通过深度学习,对于震爆初始化后高能材料微结构中的介观能量分布进行建模。
提出的多尺度建模框架分为两个阶段。第一阶段我们使用具有物理感知能力的递归卷积神经网络对于震爆初始化涉及异质材料微结构中的介观能量分布进行建模。 神经网络使用来自对于不同输入激波强度下压缩HMX材料的微结构中热点点火和生长的直接数值模拟(DNS)数据进行训练。训练完成后,使用神经网络模拟的热点点火和生长速率作为宏观尺度的震爆模拟中的输入数据。模拟结果表明,使用这种基于神经网络的方法可以极大地降低计算成本,同时提供更准确的子网物理学表现。提出的多尺度建模方法将为材料科学家设计高性能高能材料提供新的工具。