We propose an approach to modelling large-scale multi-agent dynamical systems allowing interactions among more than just pairs of agents using the theory of mean field games and the notion of hypergraphons, which are obtained as limits of large hypergraphs. To the best of our knowledge, ours is the first work on mean field games on hypergraphs. Together with an extension to a multi-layer setup, we obtain limiting descriptions for large systems of non-linear, weakly-interacting dynamical agents. On the theoretical side, we prove the well-foundedness of the resulting hypergraphon mean field game, showing both existence and approximate Nash properties. On the applied side, we extend numerical and learning algorithms to compute the hypergraphon mean field equilibria. To verify our approach empirically, we consider a social rumor spreading model, where we give agents intrinsic motivation to spread rumors to unaware agents, and an epidemics control problem.
翻译:我们提出一种方法来模拟大规模多试剂动态系统,使不只是一对代理人之间的相互作用能够使用中度野外游戏理论和高射线概念来模拟大规模多试剂动态系统,这些理论和高射线概念是作为大高射线的极限获得的。我们最了解的是,我们的工作是首次在高射线上的中度野游戏上进行。加上一个多层结构的扩展,我们获得了大型非线性、低度互动动态代理人系统的有限描述。在理论方面,我们证明由此产生的超射线中界游戏有充分的根据,显示存在和近似纳什特性。在应用方面,我们扩展了数字和学习算法,以计算高射线显示中度空空空等值。为了根据经验来验证我们的方法,我们考虑一种社会传说传播模式,我们让代理人将谣言传播给不知名的代理人的内在动机,以及流行病控制问题。