Adequate strategizing of agents behaviors is essential to solving cooperative MARL problems. One intuitively beneficial yet uncommon method in this domain is predicting agents future behaviors and planning accordingly. Leveraging this point, we propose a two-level hierarchical architecture that combines a novel information-theoretic objective with a trajectory prediction model to learn a strategy. To this end, we introduce a latent policy that learns two types of latent strategies: individual $z_A$, and relational $z_R$ using a modified Graph Attention Network module to extract interaction features. We encourage each agent to behave according to the strategy by conditioning its local $Q$ functions on $z_A$, and we further equip agents with a shared $Q$ function that conditions on $z_R$. Additionally, we introduce two regularizers to allow predicted trajectories to be accurate and rewarding. Empirical results on Google Research Football (GRF) and StarCraft (SC) II micromanagement tasks show that our method establishes a new state of the art being, to the best of our knowledge, the first MARL algorithm to solve all super hard SC II scenarios as well as the GRF full game with a win rate higher than $95\%$, thus outperforming all existing methods. Videos and brief overview of the methods and results are available at: https://sites.google.com/view/hier-strats-marl/home.


翻译:对代理人行为进行适当的战略分析对于解决合作MARL问题至关重要。 在这一领域,一个直观但不常见的有益方法就是预测代理人未来的行为和相应规划。 利用这一点,我们提出一个两级等级结构,将一个新的信息理论目标与轨迹预测模型结合起来,学习一项战略。 为此,我们引入了一项潜在政策,学习两种潜在战略: 个人$_A$和关系$z_R$, 使用修改后的图表关注网络模块来提取互动功能。 我们鼓励每个代理人按照战略行事,将当地$Q的功能调整为$z_A$,我们进一步为代理人配备一个共同的美元功能,即条件为$z_R$。 此外,我们引入两个规范者,让预测的轨迹准确和奖励。 谷歌研究足球(GRF)和StarCraft(SC)二的微观管理任务显示,我们的方法确立了一种新的艺术状态,我们最了解的是,第一个更高MAR_Q(Q$)的算法,用来解决所有超硬盘的SC- II的游戏结果。 我们引入了两种方法, 以全部的G- hal- habilegle view view 和所有的G- hal view

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月13日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员