We consider the momentum stochastic gradient descent scheme (MSGD) and its continuous-in-time counterpart in the context of non-convex optimization. We show almost sure exponential convergence of the objective function value for target functions that are Lipschitz continuous and satisfy the Polyak-Lojasiewicz inequality on the relevant domain, and under assumptions on the stochastic noise that are motivated by overparameterized supervised learning applications. Moreover, we optimize the convergence rate over the set of friction parameters and show that the MSGD process almost surely converges.


翻译:我们从非电流优化的角度来考虑动力随机梯度下降计划(MSGD)及其在非电流优化背景下的连续时间对应机制(MSGD),我们几乎可以肯定地看出,利普西茨目标功能的客观功能价值的指数趋同,满足了相关领域的Polyak-Lojasiewicz不平等,并基于过度分计的受监督学习应用驱动的随机声音的假设。 此外,我们优化了摩擦参数的趋同率,并表明MSGD进程几乎肯定会趋同。

0
下载
关闭预览

相关内容

随机梯度下降,按照数据生成分布抽取m个样本,通过计算他们梯度的平均值来更新梯度。
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员