We analyze stochastic gradient descent (SGD) type algorithms on a high-dimensional sphere which is parameterized by a neural network up to a normalization constant. We provide a new algorithm for the setting of supervised learning and show its convergence both theoretically and numerically. We also provide the first proof of convergence for the unsupervised setting, which corresponds to the widely used variational Monte Carlo (VMC) method in quantum physics.
翻译:我们分析了在由神经网络参数化但尚未标准化的高维球上应用随机梯度下降(SGD)类型算法。我们提供了一种新的算法用于有监督的学习,并在理论和数值上证明了其收敛性。我们还提供了第一个无监督设置的收敛证明,其对应于量子物理中广泛使用的变分蒙特卡罗(VMC)方法。