So far, the pseudo cross-variogram is primarily used as a tool for the structural analysis of multivariate random fields. Mainly applying recent theoretical results on the pseudo cross-variogram, we use it as a cornerstone in the construction of valid covariance models for multivariate random fields. In particular, we extend known univariate constructions to the multivariate case, and generalize existing multivariate models. Furthermore, we provide a general construction principle for conditionally negative definite matrix-valued kernels, which we use to reinterpret previous modeling proposals.
翻译:到目前为止,假的跨变量图主要用作多变量随机字段结构分析的工具。主要应用最近关于伪的跨变量图的理论结果,我们把它作为构建有效的多变量随机字段共变模型的基石。特别是,我们将已知的单变量构造扩展至多变量模型,并推广现有的多变量模型。此外,我们为有条件的负矩阵定值内核提供了一个通用构建原则,我们用这些模型来重新解释先前的模型提案。