Large amounts of geospatial data have been made available recently on the linked open data cloud and the portals of many national cartographic agencies (e.g., OpenStreetMap data, administrative geographies of various countries, or land cover/land use data sets). These datasets use various geospatial vocabularies and can be queried using SPARQL or its OGC-standardized extension GeoSPARQL. In this paper, we go beyond these approaches to offer a question-answering engine for natural language questions on top of linked geospatial data sources. Our system has been implemented as re-usable components of the Frankenstein question answering architecture. We give a detailed description of the system's architecture, its underlying algorithms, and its evaluation using a set of 201 natural language questions. The set of questions is offered to the research community as a gold standard dataset for the comparative evaluation of future geospatial question answering engines.


翻译:最近,在相连的开放数据云和许多国家制图机构的门户网站(例如OpenStreetMap数据、不同国家的行政地理图或土地覆被/土地使用数据集)上提供了大量地理空间数据,这些数据集使用了各种地理空间词汇,可以使用SPARQL或其标准化的OGC扩展GeoSPARQL进行查询。在本文件中,我们超越了这些方法,在链接的地理空间数据源之上为自然语言问题提供一个问答引擎。我们的系统已经作为可重复使用的科学怪人问题解答结构组成部分而实施。我们详细介绍了该系统的结构、其基本算法以及使用一套201种自然语言问题进行的评价。向研究界提供的一组问题,是用于比较评估未来地理空间问题解答引擎的金质标准数据集。

0
下载
关闭预览

相关内容

自动问答(Question Answering, QA)是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务。不同于现有搜索引擎,问答系统是信息服务的一种高级形式,系统返回用户的不再是基于关键词匹配排序的文档列表,而是精准的自然语言答案。近年来,随着人工智能的飞速发展,自动问答已经成为倍受关注且发展前景广泛的研究方向。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
图分类相关资源大列表
专知
11+阅读 · 2019年7月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
CoQA: A Conversational Question Answering Challenge
Arxiv
7+阅读 · 2018年8月21日
QuAC : Question Answering in Context
Arxiv
4+阅读 · 2018年8月21日
Arxiv
9+阅读 · 2016年10月27日
VIP会员
相关资讯
图分类相关资源大列表
专知
11+阅读 · 2019年7月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员