Learning Graph Representation via Frequent Subgraphs (SDM 2018)
Dang Nguyen, Wei Luo, Tu Dinh Nguyen, Svetha Venkatesh, Dinh Phung
https://epubs.siam.org/doi/10.1137/1.9781611975321.35
https://github.com/nphdang/GE-FSG
Anonymous Walk Embeddings (ICML 2018)
Sergey Ivanov and Evgeny Burnaev
https://arxiv.org/pdf/1805.11921.pdf
https://github.com/nd7141/AWE
Graph2vec (MLGWorkshop 2017)
Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and Santhoshkumar Saminathan
https://arxiv.org/abs/1707.05005
[[Python High Performance]]https://github.com/benedekrozemberczki/graph2vec
https://github.com/MLDroid/graph2vec_tf
Subgraph2vec (MLGWorkshop 2016)
Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and Santhoshkumar Saminathan
https://arxiv.org/abs/1606.08928
[[Python High Performance]]https://github.com/MLDroid/subgraph2vec_gensim
https://github.com/MLDroid/subgraph2vec_tf
Rdf2Vec: RDF Graph Embeddings for Data Mining (ISWC 2016)
Petar Ristoski and Heiko Paulheim
https://link.springer.com/chapter/10.1007/978-3-319-46523-4_30
https://github.com/airobert/RDF2VecAtWebScale
Deep Graph Kernels (KDD 2015)
Pinar Yanardag and S.V.N. Vishwanathan
https://dl.acm.org/citation.cfm?id=2783417
https://github.com/pankajk/Deep-Graph-Kernels
A Simple Yet Effective Baseline for Non-Attribute Graph Classification (ICLR RLPM 2019)
Chen Cai, Yusu Wang
https://arxiv.org/abs/1811.03508
https://github.com/Chen-Cai-OSU/LDP
NetLSD (KDD 2018)
Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alex Bronstein, and Emmanuel Müller
https://arxiv.org/abs/1805.10712
https://github.com/xgfs/NetLSD
A Simple Baseline Algorithm for Graph Classification (Relational Representation Learning, NIPS 2018)
Nathan de Lara and Edouard Pineau
https://arxiv.org/pdf/1810.09155.pdf
https://github.com/edouardpineau/A-simple-baseline-algorithm-for-graph-classification
Multi-Graph Multi-Label Learning Based on Entropy (Entropy NIPS 2018)
Zixuan Zhu and Yuhai Zhao
https://github.com/TonyZZX/MultiGraph_MultiLabel_Learning/blob/master/entropy-20-00245.pdf
https://github.com/TonyZZX/MultiGraph_MultiLabel_Learning
Hunt For The Unique, Stable, Sparse And Fast Feature Learning On Graphs (NIPS 2017)
Saurabh Verma and Zhi-Li Zhang
https://papers.nips.cc/paper/6614-hunt-for-the-unique-stable-sparse-and-fast-feature-learning-on-graphs.pdf
https://github.com/vermaMachineLearning/FGSD
Joint Structure Feature Exploration and Regularization for Multi-Task Graph Classification (TKDE 2015)
Shirui Pan, Jia Wu, Xingquan Zhuy, Chengqi Zhang, and Philip S. Yuz
https://ieeexplore.ieee.org/document/7302040
[[Java Reference]]https://github.com/shiruipan/MTG
NetSimile: A Scalable Approach to Size-Independent Network Similarity (arXiv 2012)
Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos
https://arxiv.org/abs/1209.2684
[[Python]]https://github.com/kristyspatel/Netsimile
Ego-CNN: Distributed, Egocentric Representations of Graphs for Detecting Critical Structure (ICML 2019)
Ruo-Chun Tzeng, Shan-Hung Wu
http://proceedings.mlr.press/v97/tzeng19a/tzeng19a.pdf
https://github.com/rutzeng/EgoCNN
Self-Attention Graph Pooling (ICML 2019)
Junhyun Lee, Inyeop Lee, Jaewoo Kang
https://arxiv.org/abs/1904.08082
https://github.com/inyeoplee77/SAGPool
Variational Recurrent Neural Networks for Graph Classification (ICLR 2019)
Edouard Pineau, Nathan de Lara
https://arxiv.org/abs/1902.02721
https://github.com/edouardpineau/Variational-Recurrent-Neural-Networks-for-Graph-Classification
Crystal Graph Neural Networks for Data Mining in Materials Science (Arxiv 2019)
Takenori Yamamoto
https://storage.googleapis.com/rimcs_cgnn/cgnn_matsci_May_27_2019.pdf
https://github.com/Tony-Y/cgnn
Explainability Techniques for Graph Convolutional Networks (ICML 2019 Workshop)
Federico Baldassarre, Hossein Azizpour
https://128.84.21.199/pdf/1905.13686.pdf
https://github.com/gn-exp/gn-exp
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019)
Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wenbing Huang, and Junzhou Huang
https://arxiv.org/pdf/1904.05003.pdf
https://github.com/benedekrozemberczki/SEAL-CI
Capsule Graph Neural Network (ICLR 2019)
Zhang Xinyi and Lihui Chen
https://openreview.net/forum?id=Byl8BnRcYm
https://github.com/benedekrozemberczki/CapsGNN
How Powerful are Graph Neural Networks? (ICLR 2019)
Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka
https://arxiv.org/abs/1810.00826
https://github.com/weihua916/powerful-gnns
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks (AAAI 2019)
Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe
https://arxiv.org/pdf/1810.02244v2.pdf
https://github.com/k-gnn/k-gnn
Capsule Neural Networks for Graph Classification using Explicit Tensorial Graph Representations (Arxiv 2019)
Marcelo Daniel Gutierrez Mallea, Peter Meltzer, and Peter J Bentley
https://arxiv.org/pdf/1902.08399v1.pdf
https://github.com/BraintreeLtd/PatchyCapsules
Three-Dimensionally Embedded Graph Convolutional Network for Molecule Interpretation (Arxiv 2018)
Hyeoncheol Cho and Insung. S. Choi
https://arxiv.org/abs/1811.09794
https://github.com/blackmints/3DGCN
Learning Graph-Level Representations with Recurrent Neural Networks (Arxiv 2018)
Yu Jin and Joseph F. JaJa
https://arxiv.org/pdf/1805.07683v4.pdf
https://github.com/yuj-umd/graphRNN
Graph Capsule Convolutional Neural Networks (ICML 2018)
Saurabh Verma and Zhi-Li Zhang
https://arxiv.org/abs/1805.08090
https://github.com/vermaMachineLearning/Graph-Capsule-CNN-Networks
Graph Classification Using Structural Attention (KDD 2018)
John Boaz Lee, Ryan Rossi, and Xiangnan Kong
http://ryanrossi.com/pubs/KDD18-graph-attention-model.pdf
[[Python Pytorch Reference]]https://github.com/benedekrozemberczki/GAM
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation (NIPS 2018)
Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec
https://arxiv.org/abs/1806.02473
https://github.com/bowenliu16/rl_graph_generation
Hierarchical Graph Representation Learning with Differentiable Pooling (NIPS 2018)
Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton and Jure Leskovec
http://papers.nips.cc/paper/7729-hierarchical-graph-representation-learning-with-differentiable-pooling.pdf
https://github.com/rusty1s/pytorch_geometric
Contextual Graph Markov Model: A Deep and Generative Approach to Graph Processing (ICML 2018)
Davide Bacciu, Federico Errica, and Alessio Micheli
https://arxiv.org/pdf/1805.10636.pdf
https://github.com/diningphil/CGMM
MolGAN: An Implicit Generative Model for Small Molecular Graphs (ICML 2018)
Nicola De Cao and Thomas Kipf
https://arxiv.org/pdf/1805.11973.pdf
https://github.com/nicola-decao/MolGAN
Deeply Learning Molecular Structure-Property Relationships Using Graph Attention Neural Network (2018)
Seongok Ryu, Jaechang Lim, and Woo Youn Kim
https://arxiv.org/abs/1805.10988
https://github.com/SeongokRyu/Molecular-GAT
Compound-protein Interaction Prediction with End-to-end Learning of Neural Networks for Graphs and Sequences (Bioinformatics 2018)
Masashi Tsubaki, Kentaro Tomii, and Jun Sese
https://academic.oup.com/bioinformatics/article/35/2/309/5050020
https://github.com/masashitsubaki/CPI_prediction
https://github.com/masashitsubaki/GNN_molecules
[[Python Alternative ]]https://github.com/xnuohz/GCNDTI
Learning Graph Distances with Message Passing Neural Networks (ICPR 2018)
Pau Riba, Andreas Fischer, Josep Llados, and Alicia Fornes
https://ieeexplore.ieee.org/abstract/document/8545310
https://github.com/priba/siamese_ged
Edge Attention-based Multi-Relational Graph Convolutional Networks (2018)
Chao Shang, Qinqing Liu, Ko-Shin Chen, Jiangwen Sun, Jin Lu, Jinfeng Yi and Jinbo Bi
https://arxiv.org/abs/1802.04944v1
https://github.com/Luckick/EAGCN
Commonsense Knowledge Aware Conversation Generation with Graph Attention (IJCAI-ECAI 2018)
Hao Zhou, Tom Yang, Minlie Huang, Haizhou Zhao, Jingfang Xu and Xiaoyan Zhu
http://coai.cs.tsinghua.edu.cn/hml/media/files/2018_commonsense_ZhouHao_3_TYVQ7Iq.pdf
https://github.com/tuxchow/ccm
Residual Gated Graph ConvNets (ICLR 2018)
Xavier Bresson and Thomas Laurent
https://arxiv.org/pdf/1711.07553v2.pdf
[[Python Pytorch Reference]]https://github.com/xbresson/spatial_graph_convnets
An End-to-End Deep Learning Architecture for Graph Classification (AAAI 2018)
Muhan Zhang, Zhicheng Cui, Marion Neumann and Yixin Chen
https://www.cse.wustl.edu/~muhan/papers/AAAI_2018_DGCNN.pdf
[[Python Tensorflow Reference]]https://github.com/muhanzhang/DGCNN
[[Python Pytorch Reference]]https://github.com/muhanzhang/pytorch_DGCNN
[[MATLAB Reference]]https://github.com/muhanzhang/DGCNN
[[Python Alternative]]https://github.com/leftthomas/DGCNN
[[Python Alternative]]https://github.com/hitlic/DGCNN-tensorflow
SGR: Self-Supervised Spectral Graph Representation Learning (KDD DLDay 2018)
Anton Tsitsulin, Davide Mottin, Panagiotis Karra, Alex Bronstein and Emmanueal Müller
https://arxiv.org/abs/1807.02839
http://mott.in/publications/others/sgr/
Deep Learning with Topological Signatures (NIPS 2017)
Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl
https://arxiv.org/abs/1707.04041
https://github.com/c-hofer/nips2017
Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs (CVPR 2017)
Martin Simonovsky and Nikos Komodakis
https://arxiv.org/pdf/1704.02901v3.pdf
https://github.com/mys007/ecc
Deriving Neural Architectures from Sequence and Graph Kernels (ICML 2017)
Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola
https://arxiv.org/abs/1705.09037
https://github.com/taolei87/icml17_knn
Protein Interface Prediction using Graph Convolutional Networks (NIPS 2017)
Alex Fout, Jonathon Byrd, Basir Shariat and Asa Ben-Hur
https://papers.nips.cc/paper/7231-protein-interface-prediction-using-graph-convolutional-networks
https://github.com/fouticus/pipgcn
Graph Classification with 2D Convolutional Neural Networks (2017)
Antoine J.-P. Tixier, Giannis Nikolentzos, Polykarpos Meladianos and Michalis Vazirgiannis
https://arxiv.org/abs/1708.02218
https://github.com/Tixierae/graph_2D_CNN
CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters (IEEE TSP 2017)
Ron Levie, Federico Monti, Xavier Bresson, Michael M. Bronstein
https://arxiv.org/pdf/1705.07664v2.pdf
https://github.com/fmonti/CayleyNet
Semi-supervised Learning of Hierarchical Representations of Molecules Using Neural Message Passing (2017)
Hai Nguyen, Shin-ichi Maeda, Kenta Oono
https://arxiv.org/pdf/1711.10168.pdf
https://github.com/pfnet-research/hierarchical-molecular-learning
Kernel Graph Convolutional Neural Networks (2017)
Giannis Nikolentzos, Polykarpos Meladianos, Antoine Jean-Pierre Tixier, Konstantinos Skianis, Michalis Vazirgiannis
https://arxiv.org/pdf/1710.10689.pdf
https://github.com/giannisnik/cnn-graph-classification
Deep Topology Classification: A New Approach For Massive Graph Classification (IEEE Big Data 2016)
Stephen Bonner, John Brennan, Georgios Theodoropoulos, Ibad Kureshi, Andrew Stephen McGough
https://ieeexplore.ieee.org/document/7840988/
https://github.com/sbonner0/DeepTopologyClassification
Learning Convolutional Neural Networks for Graphs (ICML 2016)
Mathias Niepert, Mohamed Ahmed, Konstantin Kutzkov
https://arxiv.org/abs/1605.05273
https://github.com/tvayer/PSCN
Gated Graph Sequence Neural Networks (ICLR 2016)
Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard Zemel
https://arxiv.org/abs/1511.05493
[[Python TensorFlow]]https://github.com/bdqnghi/ggnn.tensorflow
[[Python PyTorch]]https://github.com/JamesChuanggg/ggnn.pytorch
https://github.com/YunjaeChoi/ggnnmols
Convolutional Networks on Graphs for Learning Molecular Fingerprints (NIPS 2015)
David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams
https://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints.pdf
https://github.com/fllinares/neural_fingerprints_tf
https://github.com/jacklin18/neural-fingerprint-in-GNN
https://github.com/HIPS/neural-fingerprint
https://github.com/debbiemarkslab/neural-fingerprint-theano
Message Passing Graph Kernels (2018)
Giannis Nikolentzos, Michalis Vazirgiannis
https://arxiv.org/pdf/1808.02510.pdf
https://github.com/giannisnik/message_passing_graph_kernels
Matching Node Embeddings for Graph Similarity (AAAI 2017)
Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14494
Global Weisfeiler-Lehman Graph Kernels (2017)
Christopher Morris, Kristian Kersting and Petra Mutzel
https://arxiv.org/pdf/1703.02379.pdf
[[C++ Reference]]https://github.com/chrsmrrs/glocalwl
On Valid Optimal Assignment Kernels and Applications to Graph Classification (2016)
Nils Kriege, Pierre-Louis Giscard, Richard Wilson
https://arxiv.org/pdf/1606.01141.pdf
[[Java Reference]]https://github.com/nlskrg/optimal_assignment_kernels
Efficient Comparison of Massive Graphs Through The Use Of ‘Graph Fingerprints’ (MLGWorkshop 2016)
Stephen Bonner, John Brennan, and A. Stephen McGough
http://dro.dur.ac.uk/19773/1/19773.pdf?DDD10+lzdh59+d700tmt
https://github.com/sbonner0/GraphFingerprintComparison
The Multiscale Laplacian Graph Kernel (NIPS 2016)
Risi Kondor and Horace Pan
https://arxiv.org/abs/1603.06186
[[C++ Reference]]https://github.com/horacepan/MLGkernel
Faster Kernels for Graphs with Continuous Attributes (ICDM 2016)
Christopher Morris, Nils M. Kriege, Kristian Kersting and Petra Mutzel
https://arxiv.org/abs/1610.00064
https://github.com/chrsmrrs/hashgraphkernel
Propagation Kernels: Efficient Graph Kernels From Propagated Information (Machine Learning 2016)
Neumann, Marion and Garnett, Roman and Bauckhage, Christian and Kersting, Kristian
https://link.springer.com/article/10.1007/s10994-015-5517-9
[[Matlab Reference]]https://github.com/marionmari/propagation_kernels
Halting Random Walk Kernels (NIPS 2015)
Mahito Sugiyama and Karsten M. Borgward
https://pdfs.semanticscholar.org/79ba/8bcfbf9496834fdc22a1f7c96d26d776cd6c.pdf
[[C++ Reference]]https://github.com/BorgwardtLab/graph-kernels
Scalable Kernels for Graphs with Continuous Attributes (NIPS 2013)
Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne and Karsten Borgwardt
https://papers.nips.cc/paper/5155-scalable-kernels-for-graphs-with-continuous-attributes.pdf
Subgraph Matching Kernels for Attributed Graphs (ICML 2012)
Nils Kriege and Petra Mutzel
https://arxiv.org/abs/1206.6483
https://github.com/mockingbird2/GraphKernelBenchmark
Nested Subtree Hash Kernels for Large-Scale Graph Classification over Streams (ICDM 2012)
Bin Li, Xingquan Zhu, Lianhua Chi, Chengqi Zhang
https://ieeexplore.ieee.org/document/6413884/
https://github.com/benedekrozemberczki/NestedSubtreeHash
Weisfeiler-Lehman Graph Kernels (JMLR 2011)
Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt
http://www.jmlr.org/papers/volume12/shervashidze11a/shervashidze11a.pdf
https://github.com/jajupmochi/py-graph
https://github.com/deeplego/wl-graph-kernels
[[C++ Reference]]https://github.com/BorgwardtLab/graph-kernels
Fast Neighborhood Subgraph Pairwise Distance Kernel (ICML 2010)
Fabrizio Costa and Kurt De Grave
https://icml.cc/Conferences/2010/papers/347.pdf
[[C++ Reference]]https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/www.bioinf.uni-freiburg.de/~costa/EDeNcpp.tgz
https://github.com/fabriziocosta/EDeN
A Linear-time Graph Kernel (ICDM 2009)
Shohei Hido and Hisashi Kashima
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5360243
https://github.com/hgascon/adagio
Weisfeiler-Lehman Subtree Kernels (NIPS 2009)
Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt
http://papers.nips.cc/paper/3813-fast-subtree-kernels-on-graphs.pdf
https://github.com/jajupmochi/py-graph
https://github.com/deeplego/wl-graph-kernels
[[C++ Reference]]https://github.com/BorgwardtLab/graph-kernels
Fast Computation of Graph Kernels (NIPS 2006)
S. V. N. Vishwanathan, Karsten M. Borgwardt, and Nicol N. Schraudolph
http://www.dbs.ifi.lmu.de/Publikationen/Papers/VisBorSch06.pdf
https://github.com/jajupmochi/py-graph
[[C++ Reference]]https://github.com/BorgwardtLab/graph-kernels
Shortest-Path Kernels on Graphs (ICDM 2005)
Karsten M. Borgwardt and Hans-Peter Kriegel
https://www.ethz.ch/content/dam/ethz/special-interest/bsse/borgwardt-lab/documents/papers/BorKri05.pdf
[[C++ Reference]]https://github.com/KitwareMedical/ITKTubeTK
Cyclic Pattern Kernels For Predictive Graph Mining (KDD 2004)
Tamás Horváth, Thomas Gärtner, and Stefan Wrobel
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.332.6158&rep=rep1&type=pdf
https://github.com/jajupmochi/py-graph
Extensions of Marginalized Graph Kernels (ICML 2004)
Pierre Mahe, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and Jean-Philippe Vert
http://members.cbio.mines-paristech.fr/~jvert/publi/04icml/icmlMod.pdf
https://github.com/jajupmochi/py-graph
Marginalized Kernels Between Labeled Graphs (ICML 2003)
Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi
https://pdfs.semanticscholar.org/2dfd/92c808487049ab4c9b45db77e9055b9da5a2.pdf
https://github.com/jajupmochi/py-graph
原文链接:
https://github.com/benedekrozemberczki/awesome-graph-classification
-END-
专 · 知
专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!
请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~
专知《深度学习:算法到实战》课程全部完成!550+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!
点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程