图分类相关资源大列表

2019 年 7 月 18 日 专知

【导读】本文整理了图分类方法的集合,包括嵌入,深度学习,图形内核和分解论文以及参考实现。

Factorization

  • Learning Graph Representation via Frequent Subgraphs (SDM 2018)

    • Dang Nguyen, Wei Luo, Tu Dinh Nguyen, Svetha Venkatesh, Dinh Phung

    • https://epubs.siam.org/doi/10.1137/1.9781611975321.35

    • https://github.com/nphdang/GE-FSG

  • Anonymous Walk Embeddings (ICML 2018)

    • Sergey Ivanov and Evgeny Burnaev

    • https://arxiv.org/pdf/1805.11921.pdf

    • https://github.com/nd7141/AWE

  • Graph2vec (MLGWorkshop 2017)

    • Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and Santhoshkumar Saminathan

    • https://arxiv.org/abs/1707.05005

    • [[Python High Performance]]https://github.com/benedekrozemberczki/graph2vec

    • https://github.com/MLDroid/graph2vec_tf

  • Subgraph2vec (MLGWorkshop 2016)

    • Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and Santhoshkumar Saminathan

    • https://arxiv.org/abs/1606.08928

    • [[Python High Performance]]https://github.com/MLDroid/subgraph2vec_gensim

    • https://github.com/MLDroid/subgraph2vec_tf

  • Rdf2Vec: RDF Graph Embeddings for Data Mining (ISWC 2016)

    • Petar Ristoski and Heiko Paulheim

    • https://link.springer.com/chapter/10.1007/978-3-319-46523-4_30

    • https://github.com/airobert/RDF2VecAtWebScale

  • Deep Graph Kernels (KDD 2015)

    • Pinar Yanardag and S.V.N. Vishwanathan

    • https://dl.acm.org/citation.cfm?id=2783417

    • https://github.com/pankajk/Deep-Graph-Kernels

Spectral and Statistical Fingerprints

  • A Simple Yet Effective Baseline for Non-Attribute Graph Classification (ICLR RLPM 2019)

    • Chen Cai, Yusu Wang

    • https://arxiv.org/abs/1811.03508

    • https://github.com/Chen-Cai-OSU/LDP

  • NetLSD (KDD 2018)

    • Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alex Bronstein, and Emmanuel Müller

    • https://arxiv.org/abs/1805.10712

    • https://github.com/xgfs/NetLSD

  • A Simple Baseline Algorithm for Graph Classification (Relational Representation Learning, NIPS 2018)

    • Nathan de Lara and Edouard Pineau

    • https://arxiv.org/pdf/1810.09155.pdf

    • https://github.com/edouardpineau/A-simple-baseline-algorithm-for-graph-classification

  • Multi-Graph Multi-Label Learning Based on Entropy (Entropy NIPS 2018)

    • Zixuan Zhu and Yuhai Zhao

    • https://github.com/TonyZZX/MultiGraph_MultiLabel_Learning/blob/master/entropy-20-00245.pdf

    • https://github.com/TonyZZX/MultiGraph_MultiLabel_Learning

  • Hunt For The Unique, Stable, Sparse And Fast Feature Learning On Graphs (NIPS 2017)

    • Saurabh Verma and Zhi-Li Zhang

    • https://papers.nips.cc/paper/6614-hunt-for-the-unique-stable-sparse-and-fast-feature-learning-on-graphs.pdf

    • https://github.com/vermaMachineLearning/FGSD

  • Joint Structure Feature Exploration and Regularization for Multi-Task Graph Classification (TKDE 2015)

    • Shirui Pan, Jia Wu, Xingquan Zhuy, Chengqi Zhang, and Philip S. Yuz

    • https://ieeexplore.ieee.org/document/7302040

    • [[Java Reference]]https://github.com/shiruipan/MTG

  • NetSimile: A Scalable Approach to Size-Independent Network Similarity (arXiv 2012)

    • Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos

    • https://arxiv.org/abs/1209.2684

    • [[Python]]https://github.com/kristyspatel/Netsimile

Deep Learning

  • Ego-CNN: Distributed, Egocentric Representations of Graphs for Detecting Critical Structure (ICML 2019)

    • Ruo-Chun Tzeng, Shan-Hung Wu

    • http://proceedings.mlr.press/v97/tzeng19a/tzeng19a.pdf

    • https://github.com/rutzeng/EgoCNN

  • Self-Attention Graph Pooling (ICML 2019)

    • Junhyun Lee, Inyeop Lee, Jaewoo Kang

    • https://arxiv.org/abs/1904.08082

    • https://github.com/inyeoplee77/SAGPool

  • Variational Recurrent Neural Networks for Graph Classification (ICLR 2019)

    • Edouard Pineau, Nathan de Lara

    • https://arxiv.org/abs/1902.02721

    • https://github.com/edouardpineau/Variational-Recurrent-Neural-Networks-for-Graph-Classification

  • Crystal Graph Neural Networks for Data Mining in Materials Science (Arxiv 2019)

    • Takenori Yamamoto

    • https://storage.googleapis.com/rimcs_cgnn/cgnn_matsci_May_27_2019.pdf

    • https://github.com/Tony-Y/cgnn

  • Explainability Techniques for Graph Convolutional Networks (ICML 2019 Workshop)

    • Federico Baldassarre, Hossein Azizpour

    • https://128.84.21.199/pdf/1905.13686.pdf

    • https://github.com/gn-exp/gn-exp

  • Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019)

    • Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wenbing Huang, and Junzhou Huang

    • https://arxiv.org/pdf/1904.05003.pdf

    • https://github.com/benedekrozemberczki/SEAL-CI

  • Capsule Graph Neural Network (ICLR 2019)

    • Zhang Xinyi and Lihui Chen

    • https://openreview.net/forum?id=Byl8BnRcYm

    • https://github.com/benedekrozemberczki/CapsGNN

  • How Powerful are Graph Neural Networks? (ICLR 2019)

    • Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka

    • https://arxiv.org/abs/1810.00826

    • https://github.com/weihua916/powerful-gnns

  • Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks (AAAI 2019)

    • Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe

    • https://arxiv.org/pdf/1810.02244v2.pdf

    • https://github.com/k-gnn/k-gnn

  • Capsule Neural Networks for Graph Classification using Explicit Tensorial Graph Representations (Arxiv 2019)

    • Marcelo Daniel Gutierrez Mallea, Peter Meltzer, and Peter J Bentley

    • https://arxiv.org/pdf/1902.08399v1.pdf

    • https://github.com/BraintreeLtd/PatchyCapsules

  • Three-Dimensionally Embedded Graph Convolutional Network for Molecule Interpretation (Arxiv 2018)

    • Hyeoncheol Cho and Insung. S. Choi

    • https://arxiv.org/abs/1811.09794

    • https://github.com/blackmints/3DGCN

  • Learning Graph-Level Representations with Recurrent Neural Networks (Arxiv 2018)

    • Yu Jin and Joseph F. JaJa

    • https://arxiv.org/pdf/1805.07683v4.pdf

    • https://github.com/yuj-umd/graphRNN

  • Graph Capsule Convolutional Neural Networks (ICML 2018)

    • Saurabh Verma and Zhi-Li Zhang

    • https://arxiv.org/abs/1805.08090

    • https://github.com/vermaMachineLearning/Graph-Capsule-CNN-Networks

  • Graph Classification Using Structural Attention (KDD 2018)

    • John Boaz Lee, Ryan Rossi, and Xiangnan Kong

    • http://ryanrossi.com/pubs/KDD18-graph-attention-model.pdf

    • [[Python Pytorch Reference]]https://github.com/benedekrozemberczki/GAM

  • Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation (NIPS 2018)

    • Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec

    • https://arxiv.org/abs/1806.02473

    • https://github.com/bowenliu16/rl_graph_generation

  • Hierarchical Graph Representation Learning with Differentiable Pooling (NIPS 2018)

    • Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton and Jure Leskovec

    • http://papers.nips.cc/paper/7729-hierarchical-graph-representation-learning-with-differentiable-pooling.pdf

    • https://github.com/rusty1s/pytorch_geometric

  • Contextual Graph Markov Model: A Deep and Generative Approach to Graph Processing (ICML 2018)

    • Davide Bacciu, Federico Errica, and Alessio Micheli

    • https://arxiv.org/pdf/1805.10636.pdf

    • https://github.com/diningphil/CGMM

  • MolGAN: An Implicit Generative Model for Small Molecular Graphs (ICML 2018)

    • Nicola De Cao and Thomas Kipf

    • https://arxiv.org/pdf/1805.11973.pdf

    • https://github.com/nicola-decao/MolGAN

  • Deeply Learning Molecular Structure-Property Relationships Using Graph Attention Neural Network (2018)

    • Seongok Ryu, Jaechang Lim, and Woo Youn Kim

    • https://arxiv.org/abs/1805.10988

    • https://github.com/SeongokRyu/Molecular-GAT

  • Compound-protein Interaction Prediction with End-to-end Learning of Neural Networks for Graphs and Sequences (Bioinformatics 2018)

    • Masashi Tsubaki, Kentaro Tomii, and Jun Sese

    • https://academic.oup.com/bioinformatics/article/35/2/309/5050020

    • https://github.com/masashitsubaki/CPI_prediction

    • https://github.com/masashitsubaki/GNN_molecules

    • [[Python Alternative ]]https://github.com/xnuohz/GCNDTI

  • Learning Graph Distances with Message Passing Neural Networks (ICPR 2018)

    • Pau Riba, Andreas Fischer, Josep Llados, and Alicia Fornes

    • https://ieeexplore.ieee.org/abstract/document/8545310

    • https://github.com/priba/siamese_ged

  • Edge Attention-based Multi-Relational Graph Convolutional Networks (2018)

    • Chao Shang, Qinqing Liu, Ko-Shin Chen, Jiangwen Sun, Jin Lu, Jinfeng Yi and Jinbo Bi

    • https://arxiv.org/abs/1802.04944v1

    • https://github.com/Luckick/EAGCN

  • Commonsense Knowledge Aware Conversation Generation with Graph Attention (IJCAI-ECAI 2018)

    • Hao Zhou, Tom Yang, Minlie Huang, Haizhou Zhao, Jingfang Xu and Xiaoyan Zhu

    • http://coai.cs.tsinghua.edu.cn/hml/media/files/2018_commonsense_ZhouHao_3_TYVQ7Iq.pdf

    • https://github.com/tuxchow/ccm

  • Residual Gated Graph ConvNets (ICLR 2018)

    • Xavier Bresson and Thomas Laurent

    • https://arxiv.org/pdf/1711.07553v2.pdf

    • [[Python Pytorch Reference]]https://github.com/xbresson/spatial_graph_convnets

  • An End-to-End Deep Learning Architecture for Graph Classification (AAAI 2018)

    • Muhan Zhang, Zhicheng Cui, Marion Neumann and Yixin Chen

    • https://www.cse.wustl.edu/~muhan/papers/AAAI_2018_DGCNN.pdf

    • [[Python Tensorflow Reference]]https://github.com/muhanzhang/DGCNN

    • [[Python Pytorch Reference]]https://github.com/muhanzhang/pytorch_DGCNN

    • [[MATLAB Reference]]https://github.com/muhanzhang/DGCNN

    • [[Python Alternative]]https://github.com/leftthomas/DGCNN

    • [[Python Alternative]]https://github.com/hitlic/DGCNN-tensorflow

  • SGR: Self-Supervised Spectral Graph Representation Learning (KDD DLDay 2018)

    • Anton Tsitsulin, Davide Mottin, Panagiotis Karra, Alex Bronstein and Emmanueal Müller

    • https://arxiv.org/abs/1807.02839

    • http://mott.in/publications/others/sgr/

  • Deep Learning with Topological Signatures (NIPS 2017)

    • Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl

    • https://arxiv.org/abs/1707.04041

    • https://github.com/c-hofer/nips2017

  • Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs (CVPR 2017)

    • Martin Simonovsky and Nikos Komodakis

    • https://arxiv.org/pdf/1704.02901v3.pdf

    • https://github.com/mys007/ecc

  • Deriving Neural Architectures from Sequence and Graph Kernels (ICML 2017)

    • Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola

    • https://arxiv.org/abs/1705.09037

    • https://github.com/taolei87/icml17_knn

  • Protein Interface Prediction using Graph Convolutional Networks (NIPS 2017)

    • Alex Fout, Jonathon Byrd, Basir Shariat and Asa Ben-Hur

    • https://papers.nips.cc/paper/7231-protein-interface-prediction-using-graph-convolutional-networks

    • https://github.com/fouticus/pipgcn

  • Graph Classification with 2D Convolutional Neural Networks (2017)

    • Antoine J.-P. Tixier, Giannis Nikolentzos, Polykarpos Meladianos and Michalis Vazirgiannis

    • https://arxiv.org/abs/1708.02218

    • https://github.com/Tixierae/graph_2D_CNN

  • CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters (IEEE TSP 2017)

    • Ron Levie, Federico Monti, Xavier Bresson, Michael M. Bronstein

    • https://arxiv.org/pdf/1705.07664v2.pdf

    • https://github.com/fmonti/CayleyNet

  • Semi-supervised Learning of Hierarchical Representations of Molecules Using Neural Message Passing (2017)

    • Hai Nguyen, Shin-ichi Maeda, Kenta Oono

    • https://arxiv.org/pdf/1711.10168.pdf

    • https://github.com/pfnet-research/hierarchical-molecular-learning

  • Kernel Graph Convolutional Neural Networks (2017)

    • Giannis Nikolentzos, Polykarpos Meladianos, Antoine Jean-Pierre Tixier, Konstantinos Skianis, Michalis Vazirgiannis

    • https://arxiv.org/pdf/1710.10689.pdf

    • https://github.com/giannisnik/cnn-graph-classification

  • Deep Topology Classification: A New Approach For Massive Graph Classification (IEEE Big Data 2016)

    • Stephen Bonner, John Brennan, Georgios Theodoropoulos, Ibad Kureshi, Andrew Stephen McGough

    • https://ieeexplore.ieee.org/document/7840988/

    • https://github.com/sbonner0/DeepTopologyClassification

  • Learning Convolutional Neural Networks for Graphs (ICML 2016)

    • Mathias Niepert, Mohamed Ahmed, Konstantin Kutzkov

    • https://arxiv.org/abs/1605.05273

    • https://github.com/tvayer/PSCN

  • Gated Graph Sequence Neural Networks (ICLR 2016)

    • Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard Zemel

    • https://arxiv.org/abs/1511.05493

    • [[Python TensorFlow]]https://github.com/bdqnghi/ggnn.tensorflow

    • [[Python PyTorch]]https://github.com/JamesChuanggg/ggnn.pytorch

    • https://github.com/YunjaeChoi/ggnnmols

  • Convolutional Networks on Graphs for Learning Molecular Fingerprints (NIPS 2015)

    • David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams

    • https://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints.pdf

    • https://github.com/fllinares/neural_fingerprints_tf

    • https://github.com/jacklin18/neural-fingerprint-in-GNN

    • https://github.com/HIPS/neural-fingerprint

    • https://github.com/debbiemarkslab/neural-fingerprint-theano

Graph Kernels

  • Message Passing Graph Kernels (2018)

    • Giannis Nikolentzos, Michalis Vazirgiannis

    • https://arxiv.org/pdf/1808.02510.pdf

    • https://github.com/giannisnik/message_passing_graph_kernels

  • Matching Node Embeddings for Graph Similarity (AAAI 2017)

    • Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis

    • https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14494

  • Global Weisfeiler-Lehman Graph Kernels (2017)

    • Christopher Morris, Kristian Kersting and Petra Mutzel

    • https://arxiv.org/pdf/1703.02379.pdf

    • [[C++ Reference]]https://github.com/chrsmrrs/glocalwl

  • On Valid Optimal Assignment Kernels and Applications to Graph Classification (2016)

    • Nils Kriege, Pierre-Louis Giscard, Richard Wilson

    • https://arxiv.org/pdf/1606.01141.pdf

    • [[Java Reference]]https://github.com/nlskrg/optimal_assignment_kernels

  • Efficient Comparison of Massive Graphs Through The Use Of ‘Graph Fingerprints’ (MLGWorkshop 2016)

    • Stephen Bonner, John Brennan, and A. Stephen McGough

    • http://dro.dur.ac.uk/19773/1/19773.pdf?DDD10+lzdh59+d700tmt

    • https://github.com/sbonner0/GraphFingerprintComparison

  • The Multiscale Laplacian Graph Kernel (NIPS 2016)

    • Risi Kondor and Horace Pan

    • https://arxiv.org/abs/1603.06186

    • [[C++ Reference]]https://github.com/horacepan/MLGkernel

  • Faster Kernels for Graphs with Continuous Attributes (ICDM 2016)

    • Christopher Morris, Nils M. Kriege, Kristian Kersting and Petra Mutzel

    • https://arxiv.org/abs/1610.00064

    • https://github.com/chrsmrrs/hashgraphkernel

  • Propagation Kernels: Efficient Graph Kernels From Propagated Information (Machine Learning 2016)

    • Neumann, Marion and Garnett, Roman and Bauckhage, Christian and Kersting, Kristian

    • https://link.springer.com/article/10.1007/s10994-015-5517-9

    • [[Matlab Reference]]https://github.com/marionmari/propagation_kernels

  • Halting Random Walk Kernels (NIPS 2015)

    • Mahito Sugiyama and Karsten M. Borgward

    • https://pdfs.semanticscholar.org/79ba/8bcfbf9496834fdc22a1f7c96d26d776cd6c.pdf

    • [[C++ Reference]]https://github.com/BorgwardtLab/graph-kernels

  • Scalable Kernels for Graphs with Continuous Attributes (NIPS 2013)

    • Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne and Karsten Borgwardt

    • https://papers.nips.cc/paper/5155-scalable-kernels-for-graphs-with-continuous-attributes.pdf

  • Subgraph Matching Kernels for Attributed Graphs (ICML 2012)

    • Nils Kriege and Petra Mutzel

    • https://arxiv.org/abs/1206.6483

    • https://github.com/mockingbird2/GraphKernelBenchmark

  • Nested Subtree Hash Kernels for Large-Scale Graph Classification over Streams (ICDM 2012)

    • Bin Li, Xingquan Zhu, Lianhua Chi, Chengqi Zhang

    • https://ieeexplore.ieee.org/document/6413884/

    • https://github.com/benedekrozemberczki/NestedSubtreeHash

  • Weisfeiler-Lehman Graph Kernels (JMLR 2011)

    • Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt

    • http://www.jmlr.org/papers/volume12/shervashidze11a/shervashidze11a.pdf

    • https://github.com/jajupmochi/py-graph

    • https://github.com/deeplego/wl-graph-kernels

    • [[C++ Reference]]https://github.com/BorgwardtLab/graph-kernels

  • Fast Neighborhood Subgraph Pairwise Distance Kernel (ICML 2010)

    • Fabrizio Costa and Kurt De Grave

    • https://icml.cc/Conferences/2010/papers/347.pdf

    • [[C++ Reference]]https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/www.bioinf.uni-freiburg.de/~costa/EDeNcpp.tgz

    • https://github.com/fabriziocosta/EDeN

  • A Linear-time Graph Kernel (ICDM 2009)

    • Shohei Hido and Hisashi Kashima

    • https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5360243

    • https://github.com/hgascon/adagio

  • Weisfeiler-Lehman Subtree Kernels (NIPS 2009)

    • Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt

    • http://papers.nips.cc/paper/3813-fast-subtree-kernels-on-graphs.pdf

    • https://github.com/jajupmochi/py-graph

    • https://github.com/deeplego/wl-graph-kernels

    • [[C++ Reference]]https://github.com/BorgwardtLab/graph-kernels

  • Fast Computation of Graph Kernels (NIPS 2006)

    • S. V. N. Vishwanathan, Karsten M. Borgwardt, and Nicol N. Schraudolph

    • http://www.dbs.ifi.lmu.de/Publikationen/Papers/VisBorSch06.pdf

    • https://github.com/jajupmochi/py-graph

    • [[C++ Reference]]https://github.com/BorgwardtLab/graph-kernels

  • Shortest-Path Kernels on Graphs (ICDM 2005)

    • Karsten M. Borgwardt and Hans-Peter Kriegel

    • https://www.ethz.ch/content/dam/ethz/special-interest/bsse/borgwardt-lab/documents/papers/BorKri05.pdf

    • [[C++ Reference]]https://github.com/KitwareMedical/ITKTubeTK

  • Cyclic Pattern Kernels For Predictive Graph Mining (KDD 2004)

    • Tamás Horváth, Thomas Gärtner, and Stefan Wrobel

    • http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.332.6158&rep=rep1&type=pdf

    • https://github.com/jajupmochi/py-graph

  • Extensions of Marginalized Graph Kernels (ICML 2004)

    • Pierre Mahe, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and Jean-Philippe Vert

    • http://members.cbio.mines-paristech.fr/~jvert/publi/04icml/icmlMod.pdf

    • https://github.com/jajupmochi/py-graph

  • Marginalized Kernels Between Labeled Graphs (ICML 2003)

    • Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi

    • https://pdfs.semanticscholar.org/2dfd/92c808487049ab4c9b45db77e9055b9da5a2.pdf

    • https://github.com/jajupmochi/py-graph


原文链接:

https://github.com/benedekrozemberczki/awesome-graph-classification

-END-

 · 

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!

欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询

请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~

专知《深度学习:算法到实战》课程全部完成!550+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!

点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程

登录查看更多
11

相关内容

专知会员服务
61+阅读 · 2020年3月19日
专知会员服务
110+阅读 · 2020年3月12日
近期必读的7篇 CVPR 2019【视觉问答】相关论文和代码
专知会员服务
36+阅读 · 2020年1月10日
八篇NeurIPS 2019【图神经网络(GNN)】相关论文
专知会员服务
44+阅读 · 2020年1月10日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
金融领域自然语言处理研究资源大列表
专知
13+阅读 · 2020年2月27日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
Github项目推荐 | 全景分割相关资源列表
AI研习社
9+阅读 · 2019年5月13日
Github项目推荐 | 知识图谱文献集合
AI研习社
26+阅读 · 2019年4月12日
Github项目推荐 | 图神经网络(GNN)相关资源大列表
人脸相关算法、数据集、文献资源大列表
专知
16+阅读 · 2019年3月16日
Github项目推荐 | awesome-bert:BERT相关资源大列表
AI研习社
27+阅读 · 2019年2月26日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
6+阅读 · 2019年8月22日
Arxiv
4+阅读 · 2019年2月8日
Arxiv
12+阅读 · 2018年1月28日
Arxiv
6+阅读 · 2016年1月15日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
专知会员服务
110+阅读 · 2020年3月12日
近期必读的7篇 CVPR 2019【视觉问答】相关论文和代码
专知会员服务
36+阅读 · 2020年1月10日
八篇NeurIPS 2019【图神经网络(GNN)】相关论文
专知会员服务
44+阅读 · 2020年1月10日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
金融领域自然语言处理研究资源大列表
专知
13+阅读 · 2020年2月27日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
Github项目推荐 | 全景分割相关资源列表
AI研习社
9+阅读 · 2019年5月13日
Github项目推荐 | 知识图谱文献集合
AI研习社
26+阅读 · 2019年4月12日
Github项目推荐 | 图神经网络(GNN)相关资源大列表
人脸相关算法、数据集、文献资源大列表
专知
16+阅读 · 2019年3月16日
Github项目推荐 | awesome-bert:BERT相关资源大列表
AI研习社
27+阅读 · 2019年2月26日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Top
微信扫码咨询专知VIP会员