The availability of real data from areas with high privacy requirements, such as the medical intervention space, is low and the acquisition legally complex. Therefore, this work presents a way to create a synthetic dataset for the medical context, using medical clothing as an example. The goal is to close the reality gap between the synthetic and real data. For this purpose, methods of 3D-scanned clothing and designed clothing are compared in a Domain-Randomization and Structured-Domain-Randomization scenario using an Unreal-Engine plugin or Unity. Additionally a Mixed-Reality dataset in front of a greenscreen and a target domain dataset were used. Our experiments show, that Structured-Domain-Randomization of designed clothing together with Mixed-Reality data provide a baseline achieving 72.0% mAP on a test dataset of the clinical target domain. When additionally using 15% of available target domain train data, the gap towards 100% (660 images) target domain train data could be nearly closed 80.05% mAP (81.95% mAP). Finally we show that when additionally using 100% target domain train data the accuracy could be increased to 83.35% mAP.
翻译:从高隐私要求地区(如医疗干预空间)获得的真实数据很少,而且获得的数据在法律上也非常复杂。 因此, 这项工作为创建医学合成数据集提供了一种方法, 以医疗服装为例。 目标是缩小合成数据与真实数据之间的现实差距。 为此, 3D扫描衣物和设计衣物的方法在使用非实时发动机插件或Unitedal- Engine 插件或 United 或 United Unal- Engine 目标域数据集的Delective-Reality假设中进行了比较。 此外, 在绿屏和目标域数据集前还使用了混合Reality数据集。 我们的实验显示, 设计衣物的结构- Domain- Reandomation与混合-Real 数据一起提供基线, 达到临床目标域测试数据集的72.0% mAP。 如果额外使用现有目标域列列数据的15%, 至100% (660 图像) 的目标域列列数据的差距可能接近80.05 % mAP (81.95% mAP)。 最后, 我们显示, 当额外使用100%目标域列数据时, 将提高 m8335 精确度。