For various optimization methods, gradient descent-based algorithms can achieve outstanding performance and have been widely used in various tasks. Among those commonly used algorithms, ADAM owns many advantages such as fast convergence with both the momentum term and the adaptive learning rate. However, since the loss functions of most deep neural networks are non-convex, ADAM also shares the drawback of getting stuck in local optima easily. To resolve such a problem, the idea of combining genetic algorithm with base learners is introduced to rediscover the best solutions. Nonetheless, from our analysis, the idea of combining genetic algorithm with a batch of base learners still has its shortcomings. The effectiveness of genetic algorithm can hardly be guaranteed if the unit models converge to close or the same solutions. To resolve this problem and further maximize the advantages of genetic algorithm with base learners, we propose to implement the boosting strategy for input model training, which can subsequently improve the effectiveness of genetic algorithm. In this paper, we introduce a novel optimization algorithm, namely Boosting based Genetic ADAM (BGADAM). With both theoretic analysis and empirical experiments, we will show that adding the boosting strategy into the BGADAM model can help models jump out the local optima and converge to better solutions.


翻译:对于各种优化方法,基于梯度的下层算法可以取得杰出的成绩,并被广泛用于各种任务。在那些常用的算法中,ADAM拥有许多优势,例如与动力术语和适应性学习率快速趋同。然而,由于大多数深神经网络的损失功能是非康维克斯的,ADAM还分享了很容易被困在本地选法中的缺陷。为了解决这个问题,引入了将基因算法与基础学习者结合的想法,以重新发现最佳解决办法。然而,从我们的分析来看,将基因算法与一批基础学习者相结合的想法仍然有其缺点。如果单位模型接近或相同解决办法,遗传算法的有效性就很难保证。为了解决这个问题,并进一步最大限度地扩大遗传算法与基础学习者之间的优势,我们提议实施投入模型培训的促进战略,这可以随后提高基因算法的有效性。在这份文件中,我们引入了一种新的优化算法,即基于基因ADAM(BGADAM)的推导法和实验实验实验性实验,我们将会显示,在将推动战略添加到BGADAM模型中更好的解决方案中。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年6月21日
Bayesian Attention Belief Networks
Arxiv
9+阅读 · 2021年6月9日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
5+阅读 · 2018年5月28日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
4+阅读 · 2018年2月19日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员