We study the optimal behavior of a bidder in a real-time auction subject to the requirement that a specified collections of heterogeneous items be acquired within given time constraints. The problem facing this bidder is cast as a continuous time optimization problem which we show can, under certain weak assumptions, be reduced to a convex optimization problem. Focusing on the standard first and second price auction mechanisms, we first show, using convex duality, that the optimal (infinite dimensional) bidding policy can be represented by a single finite vector of so-called "pseudo-bids". Using this result we are able to show that, in contrast to the first price auction, the optimal solution in the second price case turns out to be a very simple piecewise constant function of time. Moreover, despite the fact that the optimal solution for the first price auction is genuinely dynamic, we show that there remains a close connection between the two cases and that, empirically, there is almost no difference between optimal behavior in either setting. Finally, we detail methods for implementing our bidding policies in practice with further numerical simulations illustrating the performance.


翻译:我们研究了投标人在一次实时拍卖中的最佳行为方式,但必须规定在一定的时间限度内获得特定的各种物品的集合。这个投标人面临的问题被描绘成一个连续的时间优化问题,在某些薄弱的假设下,我们所显示的这个问题可以降低到一个螺旋形优化问题。我们首先以标准第一和第二价格拍卖机制为重点,我们使用曲线的双重性首先表明,最佳(无限维度)的投标政策可以用一个所谓的“假冒投标”的单一有限矢量来代表。我们利用这一结果可以表明,与第一次价格拍卖相比,第二个价格案例中的最佳解决办法是一个非常简单、有条理的固定时间功能。此外,尽管第一次价格拍卖的最佳解决办法是真正动态的,但我们表明,这两个案例之间仍然存在着密切联系,从经验上看,两种情况下的最佳行为几乎没有区别。最后,我们用这个结果详细说明了在实践中执行我们的投标政策的方法,用进一步的数字模拟来说明业绩。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
44+阅读 · 2020年9月25日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
多高的AUC才算高?
ResysChina
7+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2022年1月15日
Arxiv
65+阅读 · 2021年6月18日
Conceptualize and Infer User Needs in E-commerce
Arxiv
3+阅读 · 2019年10月8日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
多高的AUC才算高?
ResysChina
7+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员