Robust model predictive control (MPC) is a well-known control technique for model-based control with constraints and uncertainties. In classic robust tube-based MPC approaches, an open-loop control sequence is computed via periodically solving an online nominal MPC problem, which requires prior model information and frequent access to onboard computational resources. In this paper, we propose an efficient robust MPC solution based on receding horizon reinforcement learning, called r-LPC, for unknown nonlinear systems with state constraints and disturbances. The proposed r-LPC utilizes a Koopman operator-based prediction model obtained off-line from pre-collected input-output datasets. Unlike classic tube-based MPC, in each prediction time interval of r-LPC, we use an actor-critic structure to learn a near-optimal feedback control policy rather than a control sequence. The resulting closed-loop control policy can be learned off-line and deployed online or learned online in an asynchronous way. In the latter case, online learning can be activated whenever necessary; for instance, the safety constraint is violated with the deployed policy. The closed-loop recursive feasibility, robustness, and asymptotic stability are proven under function approximation errors of the actor-critic networks. Simulation and experimental results on two nonlinear systems with unknown dynamics and disturbances have demonstrated that our approach has better or comparable performance when compared with tube-based MPC and LQR, and outperforms a recently developed actor-critic learning approach.


翻译:强势模型预测控制(MPC)是一种众所周知的以模型为基础的控制技术(MPC ) 。 在典型的以管为基础的软管型多功能计算器方法中,一个开放环控制序列是通过定期解决在线名义多功能计算器问题来计算的,这需要事先提供模型信息,并经常访问船上的计算资源。在本文中,我们提出了一个高效的稳健的MPC解决方案,其基础是放弃地平线强化学习,称为 r-LPC, 用于有国家制约和干扰的未知的非线性系统。拟议的 r-LPC 使用一个基于库普曼操作员的预测模型,该模型来自预先收集的投入输出数据集。与传统的基于管道的控制序列不同,在 R-LPC 的每个预测时间间隔中,我们使用一个早期模型模型控制程序来学习接近最佳的反馈控制政策,而不是一个控制序列。由此产生的闭路控制政策可以在离线上学习,或者以不连续的方式在网上进行。在后一种情况下,必要时可以激活在线学习;例如,安全约束与基于可比较性运行的系统,最近显示的稳定性,在不稳性、可比较性、可操作性操作性功能下,在不固定的系统下,在不固定的运行中进行。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员