We study the epidemic source detection problem in contact tracing networks modeled as a graph-constrained maximum likelihood estimation problem using the susceptible-infected model in epidemiology. Based on a snapshot observation of the infection subgraph, we first study finite degree regular graphs and regular graphs with cycles separately, thereby establishing a mathematical equivalence in maximal likelihood ratio between the case of finite acyclic graphs and that of cyclic graphs. In particular, we show that the optimal solution of the maximum likelihood estimator can be refined to distances on graphs based on a novel statistical distance centrality that captures the optimality of the nonconvex problem. An efficient contact tracing algorithm is then proposed to solve the general case of finite degree-regular graphs with multiple cycles. Our performance evaluation on a variety of graphs shows that our algorithms outperform the existing state-of-the-art heuristics using contact tracing data from the SARS-CoV 2003 and COVID-19 pandemics by correctly identifying the superspreaders on some of the largest superspreading infection clusters in Singapore and Taiwan.
翻译:我们利用流行病学中的易感感染模型,以图表限制的最大可能性估算问题为模型,对接触追踪网络中的流行病源检测问题进行研究。根据对感染子子集的简要观察,我们首先研究有限度的定期图表和周期分开的定期图表,从而在有限环状图和环状图案例之间的最大可能性比例上确立一个数学等值。我们特别表明,对最大可能性估测器的最佳解决办法可以改进为图表上的距离,以基于新的统计距离中心点,从而捕捉非康韦克斯问题的最佳性。然后建议一种高效的接触追踪算法,以便用多个周期解决有限度常规图表的一般案例。我们对各种图表的绩效评估表明,我们的算法利用来自2003年萨斯-科沃科沃和COVID-19流行病的接触追踪数据,通过正确识别新加坡和台湾一些最大的超传播传染病群的超级传播者,从而超越了现有状态。