This paper considers the problem of real-time control and learning in dynamic systems subjected to parametric uncertainties and proposes a controller that combines Adaptive Control (AC) in the inner loop and a Reinforcement Learning (RL) based policy in the outer loop. Two classes of nonlinear dynamic systems are considered, both of which are control-affine. The first class of dynamic systems utilizes equilibrium points with expansion forms around these points and employs a Lyapunov approach. The second class of nonlinear systems uses contraction theory as the underlying framework. For both classes of systems, the AC-RL controller is shown to lead to online policies that guarantee stability, and leverage accelerated convergence properties using a high-order tuner. Additionally, for the second class of systems, the AC-RL controller is shown to lead to parameter learning with persistent excitation. Numerical validations of all algorithms are carried out using a quadrotor landing task on a moving platform and other academic examples. All results clearly point out the advantage of the proposed integrative AC-RL approach.
翻译:本文探讨了在受到参数不确定性影响的动态系统中实时控制和学习的问题,并提出了将内环适应控制(AC)与外环强化学习(RL)政策相结合的控制器。考虑的是两类非线性动态系统,其中两类都是控制室;第一类动态系统使用平衡点,在这些点周围有扩张形式,并采用Lyapunov方法;第二类非线性系统使用收缩理论作为基本框架。对于这两类系统,AC-RL控制器都显示能够导致保证稳定性的在线政策,并利用一个高阶调音器来利用加速趋同特性。此外,对于第二类系统,AC-RL控制器显示能够导致持续引力的参数学习。所有算法的量化验证工作是在移动的平台和其他学术实例上使用 quadrotortor着陆任务进行。所有结果都清楚地表明了拟议的综合AC-RL方法的优势。