Early and accurate disease detection is crucial for patient management and successful treatment outcomes. However, the automatic identification of anomalies in medical images can be challenging. Conventional methods rely on large labeled datasets which are difficult to obtain. To overcome these limitations, we introduce a novel unsupervised approach, called PHANES (Pseudo Healthy generative networks for ANomaly Segmentation). Our method has the capability of reversing anomalies, i.e., preserving healthy tissue and replacing anomalous regions with pseudo-healthy (PH) reconstructions. Unlike recent diffusion models, our method does not rely on a learned noise distribution nor does it introduce random alterations to the entire image. Instead, we use latent generative networks to create masks around possible anomalies, which are refined using inpainting generative networks. We demonstrate the effectiveness of PHANES in detecting stroke lesions in T1w brain MRI datasets and show significant improvements over state-of-the-art (SOTA) methods. We believe that our proposed framework will open new avenues for interpretable, fast, and accurate anomaly segmentation with the potential to support various clinical-oriented downstream tasks.
翻译:早期和准确的疾病检测对于患者管理和成功治疗结果至关重要。然而,医疗图像中的异常现象的自动识别可能具有挑战性。常规方法依赖于难以获取的大型标签数据集。为了克服这些限制,我们引入了一种新型的、不受监督的、称为PHANES(异常分解的Pseudo健康基因化网络)的新方法。我们的方法具有扭转异常现象的能力,即保护健康组织,用假保健重建替代异常区域。与最近的传播模型不同,我们的方法并不依赖于学习的噪音分布,也不对全图像进行随机改变。相反,我们利用潜在的基因化网络来制造对可能的异常现象的遮罩,利用基因化网络加以改进。我们展示了PHANES在T1w脑MRI数据集中检测中中风损伤方面的有效性,并展示了对最新技术(SOTA)方法的重大改进。我们认为,我们提议的框架将开辟可解释、快速和准确异常分解的新途径,并有可能支持各种临床导向的下游任务。</s>