项目名称: 有机分子器件动力学输运性质研究

项目编号: No.11304075

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 刘晓静

作者单位: 河北师范大学

项目金额: 25万元

中文摘要: 随着扫描隧道显微镜、自组装膜以及分子单层等实验技术的发展,以有机分子为功能单元的分子电子学发展迅速,分子导线、分子开关、分子整流器、分子场效应管等新型电子学器件已研制成功。实验的突破要求理论上深入理解器件中电荷的输运性质及微观机制,特别是由于有机体系独特的内禀性质导致的输运特性。本项目立足于有机材料柔性晶格和强电-声耦合特点,基于分层递阶运动方程的量子输运方法,结合Su-Schrieffer-Heeger模型,自洽求解电荷与晶格的含时演化方程,研究有机分子器件中电荷注入、输运的动力学过程,探讨系统建立稳定状态的时间尺度以及对外加激励的响应,重点关注电-声耦合作用及激发态的产生、湮灭对动力学过程的影响。一方面从理论上探索电-声耦合对输运性质的影响规律,建立有机电子学器件中的动力学输运理论;另一方面探讨有机分子器件不同于传统无机电子学器件的新效应。

中文关键词: 分子电子学;量子输运;电-声耦合;SSH 模型;分层递阶运动方程

英文摘要: The development of scanning probe techniques and the advent of self-assembly monolayers and methodologies made molecular electronics into a reality. New type molecular electronic devices, such as molecular conductance wires, conductance switching, rectifier, and field-effect transistor, have been developed successfully. In comparison with the rapid development of experimental studies, the key issue in theoretical research is to understand the fundamental mechanisms underlying the experimental phenomena, especially the electronic transport characteristics induced by the intrinsic properties of the organic materials. In this project, we will use the hierarchical equations of motion(HEOM) of the reduced-density-matrix formalism combined with the Su-Schrieffer-Heeger(SSH)model to solve the nonadiabatic dynamics of the charge and the lattice in quantum open systems self-consistently. Taking the advantage of HEOM formalism, the evolutions of the electronic injection and transport in real time domain can be obtained, then we can study the response of the system to the exciting fields and the time in which the system achieves to the steady-state. The effects of the electron-phonon coupling and the creation/annihilation of the excited states on the dynamics are focused on. Through these studies, we want to establish the

英文关键词: molecular electronics;quantum transport;electron-phonon coupling;Su-Schrieffer-Heeger model;hierarchical equation of

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
101+阅读 · 2021年8月23日
专知会员服务
43+阅读 · 2021年8月5日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
【BAAI|2019】用深度学习模拟原子间势,王涵  (附pdf)
专知会员服务
17+阅读 · 2019年11月21日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
2+阅读 · 2022年4月19日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
17+阅读 · 2020年11月15日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
151+阅读 · 2017年8月1日
小贴士
相关VIP内容
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
101+阅读 · 2021年8月23日
专知会员服务
43+阅读 · 2021年8月5日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
【BAAI|2019】用深度学习模拟原子间势,王涵  (附pdf)
专知会员服务
17+阅读 · 2019年11月21日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员