Monte Carlo simulations of physics processes at particle colliders like the Large Hadron Collider at CERN take up a major fraction of the computational budget. For some simulations, a single data point takes seconds, minutes, or even hours to compute from first principles. Since the necessary number of data points per simulation is on the order of $10^9$ - $10^{12}$, machine learning regressors can be used in place of physics simulators to significantly reduce this computational burden. However, this task requires high-precision regressors that can deliver data with relative errors of less than $1\%$ or even $0.1\%$ over the entire domain of the function. In this paper, we develop optimal training strategies and tune various machine learning regressors to satisfy the high-precision requirement. We leverage symmetry arguments from particle physics to optimize the performance of the regressors. Inspired by ResNets, we design a Deep Neural Network with skip connections that outperform fully connected Deep Neural Networks. We find that at lower dimensions, boosted decision trees far outperform neural networks while at higher dimensions neural networks perform significantly better. We show that these regressors can speed up simulations by a factor of $10^3$ - $10^6$ over the first-principles computations currently used in Monte Carlo simulations. Additionally, using symmetry arguments derived from particle physics, we reduce the number of regressors necessary for each simulation by an order of magnitude. Our work can significantly reduce the training and storage burden of Monte Carlo simulations at current and future collider experiments.
翻译:在CERN的大型 Hadron 相撞器等粒子相撞器中, 物理过程的蒙特卡洛 模拟在粒子相撞器中进行物理过程的物理模拟, 譬如 CERN 的大型 Hadron 相撞器, 占计算预算的很大一部分。 对于某些模拟, 单个数据点需要数秒、 分钟甚至小时才能从最初的原则中计算。 由于每次模拟所需的数据点数量大约为10美9美分 - 10美分12美分, 机器学习递减器可以用来取代物理模拟器, 以大大减轻这一计算负担。 然而, 这项任务需要高精度递减递减器, 以相对差小的差值提供数据, 低于1美分, 甚至0. 0. 1美分。 在本文中, 我们开发了最佳培训策略, 调调调各种机器的再分析器, 以满足高精度的要求。 我们利用粒物理学的对数的对数参数进行对称, 我们设计深神经网络的连接, 可以在更低的尺寸上, 大大的模拟中, 将决定树远的内径比的内积 的内径网络的内积分析 3 以显示我们目前更精确的内积 的内积计算, 进行更精确的计算。