This paper investigates the secrecy capacity region of multiple access wiretap (MAC-WT) channels where, besides confidential messages, the users have also open messages to transmit. All these messages are intended for the legitimate receiver (or Bob for brevity) but only the confidential messages need to be protected from the eavesdropper (Eve). We first consider a discrete memoryless (DM) MAC-WT channel where both Bob and Eve jointly decode their interested messages. By using random coding, we find an achievable rate region, within which perfect secrecy can be realized, i.e., all users can communicate with Bob with arbitrarily small probability of error, while the confidential information leaked to Eve tends to zero. Due to the high implementation complexity of joint decoding, we also consider the DM MAC-WT channel where Bob simply decodes messages independently while Eve still applies joint decoding. We then extend the results in the DM case to a Gaussian vector (GV) MAC-WT channel. Based on the information theoretic results, we further maximize the sum secrecy rate of the GV MAC-WT system by designing precoders for all users. Since the problems are non-convex, we provide iterative algorithms to obtain suboptimal solutions. Simulation results show that compared with existing schemes, secure communication can be greatly enhanced by the proposed algorithms, and in contrast to the works which only focus on the network secrecy performance, the system spectrum efficiency can be effectively improved since open messages can be simultaneously transmitted.


翻译:本文调查多个存取窃听( MAC-WT) 频道的保密能力区域, 除了保密信息外, 用户还可以在其中使用公开信息。 所有这些信息都是针对合法接收者( 或为简便目的的 Bob ) 的, 但机密信息需要受到保护, 不受窃听者( Eve) 的保护。 我们首先考虑一个离散的无记忆( DM) MAC-WT 频道, 其中Bob 和 Eve 共同解码他们感兴趣的信息。 通过随机编码, 我们发现一个可以实现完全保密的频谱区域, 也就是说, 所有用户都可以与 Bob 进行通信, 任意的概率很小, 而泄露给 Eve 的保密信息往往为零 。 由于联合解码程序的实施非常复杂, 我们还会考虑 DMAC- WT 频道, 其中Bob 只是独立解码信息, 而 Eveve 仍然使用联合解码。 我们然后将DMAC-WT 频道中的结果推广到 Gaussional 。 根据信息理论结果, 我们进一步优化GVMAC- WT 网络的保密率系统 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
最新《神经架构搜索NAS》教程,33页pdf
专知会员服务
27+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
119+阅读 · 2020年7月22日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月28日
VIP会员
相关VIP内容
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员