Following on the King Chicken Theorems originally proved by Maurer, we examine the idea of multiple flocks of chickens by bringing the chickens from tournaments to multipartite tournaments. As Kings have already been studied in multipartite settings, notably by Koh-Tan and Petrovic-Thomassen, we examine a new type of chicken more suited than Kings for these multipartite graphs: Dukes. We define an M-Duke to be a vertex from which any vertex in a different partite set is accessible by a directed path of length at most M. In analogy with Maurer's paper, we prove various structural results regarding Dukes. In particular, we prove the existence of 3-Dukes in all multipartite tournaments, and we conclude by proving that in any multipartite tournament, either there is a 1-Duke, three 2-Dukes, or four 3-Dukes.


翻译:在莫伊雷尔最初证明的 " 鸡王神话 " 上,我们研究了多只鸡群的想法,把从锦标赛到多方锦标赛的鸡群带到多方锦标赛。正如国王们已经在多个方面,特别是Koh-Tan和Petrovic-Thomassen的场合中研究过一样,我们检查了比国王们更适合这些多方图的新型鸡:杜克斯。我们把M-Duke定义为一个脊椎,不同部分的任何脊椎都可以通过最长的M.的直线路径进入。比喻莫伊雷尔的论文,我们证明了关于公爵的各种结构性结果。特别是,我们证明在所有多方锦标赛中都存在3Dukes,我们的结论是,在任何多方的锦标赛中,要么是1-Duke,32-Dukes,要么是4-3Dukes。

0
下载
关闭预览

相关内容

Notability 是一款功能强大的备注记录软件,可用于注释文稿、草拟想法、录制演讲、记录备注等。它将键入、手写、录音和照片结合在一起,便于您根据需要创建相应的备注。在 iCloud 的支持下,您的备注在 iPad、iPhone 和 Mac 上将始终可用。晨昏相伴,如影随行。
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
9+阅读 · 2020年2月15日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
VIP会员
相关VIP内容
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员